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Abstract—Diffusion Magnetic Resonance Imaging (dMRI) is 
being increasingly used to study neural connectivity of brain 
regions. High Angular Resolution Diffusion Imaging (HARDI) 
reliably estimates the local orientations of white matter tracts 
for neural connectivity analysis in the brain. However, HARDI 
suffers from long acquisition times, limiting its clinical usage. An 
effective way to reduce the acquisition time is to acquire an 
undersampled signal followed by its compressive reconstruction. 
In general, due to various calibration inaccuracies in the MR 
scanners, acquisition trajectories in the k-space get perturbed. 
Although radial sampling allows significant undersampling, the 
trajectory errors are more pronounced with it. Hence, if the 
trajectory errors are not corrected, compressive reconstruction 
of the signal would be adversely impacted. In this work, we 
propose ARTEC, a joint framework of accelerated 
reconstruction of the HARDI signal undersampled in the joint 
(k-q)-space, while incorporating trajectory error corrections. 
Simulation results on both phantom and real data demonstrate 
the superior performance of the proposed method over the 
existing state-of-the-art methods. 
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I. INTRODUCTION 

Diffusion Magnetic Resonance Imaging (dMRI) is an 
imaging modality for analyzing white matter integrity and 
neural connectivity among brain regions. dMRI is captured as 
a set of MR images individually acquired in the k-space by 
applying different diffusion gradients specified by the b-
vector and b-value, together defining the q-space [1]. Thus, 
dMRI is 4D data, where each sample in the q-space represents 
a 3D MRI volume. High Angular Resolution Diffusion 
Imaging (HARDI), a popular variant of dMRI, is good at 
distinguishing closely aligned nerve fiber tracks in a voxel but 
suffers from long acquisition times. This is inconvenient to 
patients and makes the scanning error-prone. Hence, 
compressive sensing (CS) based accelerated reconstruction is 
increasingly being used in HARDI to reduce the acquisition 
time [2, 3]. 

Although Cartesian sampling is used prominently for the 
acquisition of dMRI, radial sampling is also becoming 
popular due to its added advantages. Firstly, in the radial 
sampling, each radial spoke samples the whole span of low 
and high-frequency information, making it less sensitive to 
motion artifacts. Secondly, the sampling pattern due to radial 
is inherently dense at low-frequency regions that allows the 
image to be reconstructed using fewer projections producing 
comparatively less pronounced aliasing due to undersampling 

[4, 5]. 
Despite the above-mentioned benefits, radial trajectories 

are affected by perturbations due to hardware imperfections 
like eddy currents and gradient timing errors, wherein the 
signal is acquired at k-space frequencies that differ from the 
specified or nominal frequencies (𝐮) [6]. Since the frequency 
encoding gradients are different for each spoke in radial 
sampling, a different erroneous shift or perturbation 𝜹𝒊  is 
introduced in the 𝑖௧ spoke. This substantially reduces the 
quality of the image, especially in the case of accelerated 
reconstruction. However, the image recovery can be 
improved to a great extent if these frequency perturbations 
are known, allowing to reconstruct the signal using the actual 
or perturbed frequencies 𝐮   𝐯 , where 𝐯  are the 
perturbations in frequencies. Also, since each radial line is 
perturbed as a whole, perturbation of all the points on a radial 
line can be modeled using a value of the trajectory 
perturbation 𝜹  in the 𝑖௧  spoke. Recently, a few trajectory 
correction methods have been proposed for radial sampling 
in MRI by the detection of the erroneous shifts [6, 7]. Inspired 
by the above discussion, we propose a novel joint method for 
recovery of perturbations (𝜹) in the nominal frequencies (𝐮) 
along with the recovery of HARDI image ( 𝑿 ) from the 
undersampled k-space measurements. 

II. METHOD 

A HARDI data is a 4D volume of size 𝑠௫ ൈ 𝑠௬ ൈ 𝑠௭ ൈ
𝑑, where 𝑠௫ ൈ 𝑠௬ denotes the size of one MR slice, 𝑠௭ denotes 
the number of slices in a volume, and 𝑑 denotes the number 
of gradient directions. HARDI can also be seen as a collection 
of 𝑑 MRI volumes (in k-space), where each MRI volume is 
captured with a different diffusion gradient (specified by a b- 
vector and a b-value in q-space). Henceforth, we resize the 
HARDI data as a 2D matrix, 𝑿 ൌ ሾ𝒙ଵ 𝒙ଶ … 𝒙௩ሿ் ∈
ℝ௩ൈௗ where 𝑣 ൌ  𝑠௫ ൈ 𝑠௬ ൈ 𝑠௭ is the number of voxels and 
𝒙 ∈ ℝௗ is the diffusion gradient signal at the 𝑖௧ voxel. 

A. Subsampling 

For subsampling in q-space, we selected 𝑟 samples using 

the operator 𝚽 ∈ ℝൈௗ from the available 𝑑 no. of q-space 
samples over the spherical shell, using the quasi-uniform 
random sampling scheme [8]. Similarly, for k-space 
subsampling, we chose 𝑟  voxels using 𝚽 ∈ ℝೖൈ௩  by 
selecting uniformly distributed radial lines in the k-space. We 
use the radial sampling with alignment 𝜽 ∈ ሾ0, 𝜋ሿ.   Further, 
for a joint (k-q) space subsampling, the q-space and k-space 
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sampling operators 𝚽  and 𝚽  are used as 𝚽,𝑿 ൌ
𝚽𝑿𝚽

  to select a total of 𝑟 ൈ 𝑟  samples, where 𝚽, ൌ
𝚽 𝚽  ∈ ℝೖ୰౧ൈ௩ௗ using the Kronecker product. 

 

 
Fig. 1. (a) Red and green lines depict the nominal trajectory of a radial line 
and its trajectory after perturbation with 𝜹ఏ. (b) Relative norm error between 
actual delta δ and estimated delta 𝜹 for reconstruction with db4 as k-space 
sparsifying basis, with SR = 0.5 and 𝜹௫ = 2.5°. 

B. The Proposed ARTEC Method 

In this work, we solve the problem of accelerated 
reconstruction of HARDI data 𝑿  with unknown random 
perturbations 𝜹, in the nominal trajectories of radial spokes in 
k-space, yielding the perturbed acquisition trajectories 
denoted as 𝐮  𝜹. The proposed method estimates 𝑿 and 𝜹 
using an alternating minimization algorithm by solving the 
two sub-problems. We start with a random initialization of 
the perturbations 𝜹 with which we recover 𝑿 by solving the 
HARDI reconstruction problem using the spherical ridgelets 
as the q-space sparsifying basis. The reconstruction problem 
is presented as a synthesis-analysis formulation:  

min 
𝐒,𝜹

ଵ

ଶ
∥ 𝚽,ℱሺ𝐮  𝜹ሻ𝐒𝚪 െ 𝐘 ∥ி

ଶ  𝜆 ∥ 𝚿𝐒 ∥ଵ,         (1) 

under the constraint 𝑿 ൌ 𝑺𝚪 , where 𝐘 ∈ ℝೖൈ୰౧ is the 
subsampled HARDI data, 𝚪 ∈ ℝௗಸൈௗ is the overcomplete 
spherical ridgelet dictionary with 𝑑ீ  atoms, 𝑺 is the matrix 
with spherical ridgelet coefficients, 𝚿 is the k-space 
sparsifying basis, and ℱሺ𝐮  𝜹ሻ is the Fourier operator with 
k-space frequencies 𝐮  𝜹. 𝐮 ∈  ℝ୴ൈௗ and 𝜹 ∈  ℝ୴ൈௗ are the 
nominal frequencies and frequency perturbations 
respectively. Further, we compared reconstruction 
performance with two k-space sparsifying bases: 1) TV 
penalty (or finite differences) with 𝑙ଵ  constraint as used in 
SAAS [3] and 2) db4 wavelet as used in MSR-HARDI [9]. 
1) Update for 𝑺 : For the update of 𝑺 , we assume the 

perturbations 𝜹 to be known. Further, the relation in (1) is 
reformulated using auxiliary linear constraint Z = ΨS as:  

min 
𝐒,𝒁

ଵ

ଶ
∥ 𝚽,ℱሺ𝐮  𝜹ሻ𝐒𝚪 െ 𝐘 ∥ி

ଶ 


ଶ
∥ 𝐙 െ 𝚿𝐒 ∥ி

ଶ  

                 𝜆 ∥ 𝐙 ∥ଵ,                                   (2) 

which is solved using the smooth-FISTA algorithm [10]. 
2) Update for  𝑿: After solving (2) for S, 𝑿  is obtained 

using 𝑿 ൌ 𝑺𝚪. 

 
1 http://hardi.epfl.ch/static/events/2013–ISBI 

3) Update for 𝜹: After estimating 𝑿, we estimate values of 
perturbations 𝜹 by minimizing ∥ 𝚽,ℱሺ𝐮  𝜹ሻ𝐗 െ 𝐘 ∥ி

ଶ  
and selecting the 𝜹 that yields minimum error. Values of 
𝜹  corresponding to a specific radial line are updated 
independently using a linear brute force search in a grid 
of range ሾെ𝑝, 𝑝ሿ , where 𝑝  is the magnitude of the 
maximum expected value of 𝜹 in the signal and 𝑛 is the 
number of grid points. The alternating updation of 𝑿 and 
𝜹  is performed till the convergence is achieved. The 
proposed alternating minimization scheme is summarized 
in Algorithm-1. 
 

Algorithm 1: Algorithm for ARTEC 

1 Initialize: converged ← False, 𝜖 ൌ 0.0001 
2         𝜹 ← samples from ሾെ𝑝, 𝑝ሿ 
3 Choose: 𝜆 and 𝜌 
4 Input: S = 0  
5 while converged == False  
6 #(1) Estimate S: 

7 min 
ௌ

ଵ

ଶ
∥ 𝚽,ℱሺ𝐮  𝜹ሻ𝐒𝚪 െ 𝐘 ∥ி

ଶ  𝜆 ∥ 𝚿𝐒 ∥ଵ 

8 #(2) Estimate X: 
9 X = SΓ 
10 #(3) Estimate 𝜹 as: 
11 for 𝑖 ൌ  1 to 𝑛 

12 # For each value of 𝜹 sampled 
13 # from Uniform ሾെ𝑝, 𝑝ሿ, try to achieve: 

14 𝑚𝑖𝑛
𝜹

ଵ

ଶ
∥ 𝚽,ℱሺ𝐮  𝜹ሻ𝐗 െ 𝐘 ∥ி

ଶ  

15 end 
16 if || 𝜹௩ െ 𝜹 || ൏ 𝜖  
17 converged ← True 
18 end 
19 Return: 𝑿, 𝑺, 𝜹 
20 end 
21 Output: Estimated 𝑿 and 𝜹 

III. EXPERIMENTS AND RESULTS 

To validate the method, we use one phantom HARDI from 
the ISBI 2013 HARDI Reconstruction Challenge1 as well as 
one real HARDI image “01020-dwi-filt-Ed” from open-
source NAMIC dataset2. The reconstruction performance is 
evaluated using the peak signal-to-noise ratio (PSNR).  

A. Simulation of Trajectory Errors 

For the present work, we represent nominal frequency point 
u ൌ  𝑟𝑒ିఏ, where 𝑟 is the radial distance of point from the 
origin and 𝜃 ∈  ሾ0, πሿ  of the radial line (Fig. 1(a)). In the 
nominal trajectories, we retrospectively introduced random 
angular perturbations 𝛿ఏ  leading to the perturbed trajectory 
and hence, perturbed frequency u   𝛿 ൌ  𝑟𝑒ିሺఏାఋഇ ሻ  as 
shown in Fig. 1(a) on the green color radial line. The 
perturbations 𝛿ఏ  are randomly chosen from a uniform 
distribution ሾ െ𝛿ఏ,୫ୟ୶  , 𝛿ఏ,୫ୟ୶  ሿ. 

For both the datasets, we generated gold standard 
measurements 𝒀  from the available HARDI image 𝑿  and 
known perturbations 𝜹௧௨  using the relation 𝐘 ൌ

2 http://insight-journal.org/midas/collection/view/190 
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 𝚽,ℱሺ𝐮  𝜹ሻ𝐗. Next, ARTEC is used to recover 𝐗  after 
correcting for 𝜹. We compared reconstructions for three cases: 

1) NT: Reconstruction using only nominal trajectories 𝐮. 
2) AT: Reconstruction using actual trajectory      𝐮 

 𝜹௧௨ considering that the true perturbations are 
known. 

3) CT: Reconstruction using corrected trajectory   𝐮 
 𝜹 by estimating the deviations in trajectory (i.e. 𝜹) 
using ARTEC.  

We varied 𝜆 for all the experiments and chose values that 
yielded minimum reconstruction error. For the reconstruction 
with db4 at 𝑆𝑅 ൌ  0.5 as depicted in Fig. 1 the value of 𝜆 is 
kept as 0.05. The value of 𝜌 is increased gradually as per 
parameter continuation [10]. The algorithms are iterated till 
the error falls below a certain threshold, fixed as 𝜖 ൌ  10ିସ. 

B. ARTEC Applied on HARDI Phantom Data 

We selected HARDI data of dimension 50 ൈ 50 ൈ 50 ൈ
64 (i.e., 64 gradient directions) with 𝑏 ൌ  3000 and an SNR 
of 30dB with magnitudes corrupted by Rician noise. In the k- 
space, the number of radial lines in each slice depends on the 
sampling ratio (SR), while the number of samples on each 
radial line is fixed to 50. In our experiments, we have shown 
reconstruction of the central slice of the HARDI phantom at 
different sampling ratios and sampling strategies. We also 
verified the convergence of the algorithm by reconstructing 
the signal at k-space 𝑆𝑅 ൌ  0.5 using five different random 
initialization of 𝜹 with 𝜹௫ ൌ  2.5° as shown in Fig. 1(b). 
Since ARTEC involves joint (k-q)-space reconstruction as 
discussed in Sec. II-B1, we first compared it with an MR 
reconstruction scheme, wherein each q-sample is 
reconstructed independently. We performed reconstruction of 

each q-sample with nominal trajectories (NT-S) and actual 
trajectories (AT-S) using db4-wavelet as k-space sparsifying 
basis following [11]. However, as evident from Fig. 2(a), 
reconstruction using the joint problem presented in Sec. II-B1 
at nominal trajectories (NT) and actual trajectories (AT) is 
significantly better at all sampling ratios. Further, using the 
joint problem, we compared the reconstruction performance 
under two scenarios: 

1) Identical nominal radial sampling pattern in all q-
samples, denoted as Same-u. Performance is shown in 
Fig. 2(a-b). 

2) Different nominal radial sampling pattern in q-
samples, denoted as Diff-u. Performance is shown in 
Fig. 2(c-d). 

The reconstruction comparisons are shown with db4-
wavelet (ARTEC-db4) and finite-differences (ARTEC-TV) 
as k-space sparsifying basis, respectively with k-space 
sampling ratios varying from 10% to 90%. For all the cases, 
we observed that the reconstruction with CT is comparable to 
that of AT at all sampling ratios while also depicting a 
significant gain over NT. We can also observe that the 
reconstruction using Diff-u sampling scheme is significantly 
better than the Same-u indicating that each q-sample should 
be acquired using a different sampling pattern. This is also 
evident from the respective qualitative comparisons of 
ARTEC-db4 and ARTEC-TV using NT, AT, and CT 
at 𝑆𝑅 ൌ ሼ0.2, 0.5ሽ, and 𝜹௫ ൌ  2.5° with the two sampling 
schemes as shown in Figs. 3 and 4. We observe that the 
reconstruction with CT is comparable to that with AT and has 
significant improvement over NT. Henceforth, Diff-u is 
followed for all our experiments. 

 

 
Fig. 2. (a-b) Reconstruction using Same-u scheme: (a) Reconstruction using ARTEC-db4 and (b) Reconstruction using ARTEC-TV.  

(c-d) Reconstruction using Diff-u scheme: (c) Reconstruction using ARTEC-db4 and (d) Reconstruction using ARTEC-TV. 
 

 
Fig. 3. Reconstruction using Same-u scheme: (a) One b=3000 image from original central slice of HARDI phantom dataset. (b-c-d) images reconstructed 

with ARTEC-db4 and ARTEC-TV using NT, AT and CT; k-space sampling ratio (SR) is 0.2 and 𝛿௫ = 2.5°. ‘Recon’ denotes reconstruction. 
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Fig. 4. Reconstruction using Diff-u scheme: (a) One b=3000 image from original central slice of HARDI phantom dataset. (b-c-d) images reconstructed with 

ARTEC-db4 and ARTEC-TV using NT, AT and CT; k-space sampling ratio (SR) is 0.2 and 𝛿௫ = 2.5°. ‘Recon’ denotes reconstruction. 

 
Fig. 5. PSNR with Diff-u scheme  

(a-b) Reconstruction over different values of  𝛿୫ୟ୶ keeping k-space SR = 0.5: (a) using ARTEC-db4 and (b) using ARTEC-TV;  
(c-d) Reconstruction over different values of (k-q)-space subsampling with 𝛿୫ୟ୶ = 2.5° and SR =0.3 (30% subsampling in both k-space and q-space yields 

an effective sampling ratio of 0.09): (c) using ARTEC-db4 and (d) using ARTEC-TV. 

 

 
Fig. 6. Quality of reconstructed images using Diff-u scheme with k-space sampling ratio (SR) = 0.2 and 𝛿௫  = 15° 

(a) Original central slice of HARDI phantom dataset at b=3000; (b-c-d) Central slice reconstructed using ARTEC-db4 and ARTEC-TV with NT, AT and 
CT; ‘Recon’ implies reconstruction. 

 
Fig. 7. PSNR with Diff-u scheme  

(a-b) Reconstruction over different values of k-space sampling ratios and 𝛿௫ = 2.5°: (a) using ARTEC-db4 and (b) using ARTEC-TV;  
(c-d) Reconstruction over different values of 𝛿௫ and SR = 0.5: (c) using ARTEC-db4 and (d) using ARTEC-TV. 

 
Fig. 8. Quality of reconstructed images using Diff-u scheme with k-space sampling ratio (SR) = 0.5 and 𝛿௫  = 10° 

(a) Original slice selected from the corpus callosum region of real HARDI dataset; (b-c-d) Slice reconstructed using ARTEC-db4 and ARTEC-TV with NT, 
AT and CT; ‘Recon’ implies reconstruction 
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Fig. 9. Quality of mean diffusivity (MD) maps of images reconstructed with k-space sampling ratio (SR) = 0.5 and 𝛿௫  = 10° 

(a) MD map of original slice selected from the corpus callosum region of real HARDI dataset; (b-c-d) MD map of slice reconstructed using ARTEC-db4 
and ARTEC-TV with NT, AT and CT; ‘Recon’ implies reconstruction 

 
Next, for comparison on different amounts of perturbations, 

we reconstructed the phantom slice at SR = 0.5 with 
𝜹௫varying from 2.5° to 15° as shown in Fig. 5(a-b). In Fig. 
6, reconstruction performance is shown with ARTEC-db4 
and ARTEC-TV at 𝑆𝑅 ൌ 0.5, and 𝜹௫ = 15°. We observe 
that even at high perturbation error of 𝜹௫  = 15°, the 
reconstruction with the corrected trajectory (CT) is 
comparable to that of actual trajectory (AT), and has 
significant improvement over NT. We also tested the 
reconstruction of ARTEC-db4 and ARTEC-TV at different 
joint (k-q)-space sampling ratios. We observed comparable 
results with AT and CT that further establishes the robustness 
of the ARTEC method as shown in Fig. 5(c-d). 

A. ARTEC Applied on Real HARDI Data 

We used a real HARDI brain volume of size 
144×144×85×59(i.e., with 59 gradient directions). For better 
representation, we selected an axial slice from the corpus 
callosum region of the brain. From Fig. 7(a-b), we observe 
that both ARTEC-db4 and ARTEC-TV significantly improve 
reconstruction using CT over NT, while it is comparable to 
that with AT. A similar trend continues for reconstruction at 
different 𝜹௫ as shown in Fig. 7(c-d). Also, in Fig. 8, we 
observe significantly improved reconstruction of ARTEC-
db4 using CT compared to NT. These results indicate better 
visualization of brain structure compared to the original 
image perhaps owing to the inherent denoising property of 
the compressing sensing framework. Further, since ARTEC 
(with CT) has to estimate trajectory perturbations, which 
requires the signal to be reconstructed multiple times, it might 
have also led to denoising. Similarly, we observed improved 
results on the mean diffusivity maps of the real HARDI image 
reconstructed using ARTEC methods as shown in Fig. 9. 

IV. CONCLUSIONS AND FUTURE SCOPE 

In this work, we presented a joint framework, ARTEC, for 
the accelerated reconstruction of the HARDI signal 
undersampled in the joint (k-q)-space while incorporating 
trajectory error corrections. We validated ARTEC on 
reconstruction performance at different sampling ratios with 
subsampling introduced only in the k-space and in the joint 
(k-q)-space, and over a wide range of induced perturbations. 
ARTEC satisfactorily estimated the induced perturbations. 
The signal reconstruction performance with unknown 
perturbation is comparable to the case if the perturbations 
were known. 
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