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Abstract—Representing the weight in the network with only 
1bit contributes to saving of the required memory footprint. 
Channel attention with the squeeze-and-excitation (SE) 
technique can eliminate redundant channels, resulting in 
saving of the number of the weights. Nevertheless, this causes 
an unstable and slow learning curve. To address this issue, this 
paper proposes the first attempt to accelerate the learning 
curve, even with a 1-bit weight representation across the whole 
SEResNet14 network, which significantly reduced the number 
of model parameters with only a minimal loss in accuracy. We 
also experimented with more aggressive activation functions 
such as HardTanh. We demonstrated that the FMB (Feature 
Map Binarization) method can reduce the number of active 
channels across different layers, thereby decreasing the 
quantity of weights in the channel direction. We also 
introduced the first attempt to utilize the EigenCAM for 
evaluating the channel attention effects. Experimental results 
demonstrate the efficacy of the proposed technique in the SE 
module in terms of speed-up of the learning curve and 
positional accuracy of the heat map based on the EigenCAM. 
We found the difference in the heat map position between the 
two cases with and without the proposed technique.  
 
Keywords—EigenCAM, ResNet14, CIFAR-10, SVHN, SE 

attention mechanism, 1-bit quantization, model compression, 
activation functions, channel feature maps binarization, ultra-
compact ai deployment 
 

I. INTRODUCTION 

Modern convolutional neural networks (CNNs) [1–7] 
consist of recurring blocks with identical structures, 
leveraging principles from residual learning [8–10] and 
utilizing depthwise separable convolutions [11]. 32bit 
representation for the weight and the activation has 
provided an impressive performance. However, it poses 
significant challenges in deploying them into a stringent 
power and memory-footprint constrained device. 

First, we will explain why it is so important to reduce the 
required memory footprint to store the parameters of the 
weights and the activations. The main motivation for this is 
to eliminate the power-hungry external DRAM accesses, 
which consume a 100x larger power consumption compared 
with the accesses to embedded SRAM in an AI chip. It 
could only be done by eliminating the need to store the 
weighs the activations in the external DRAM. To do so, the 
required number of parameters has to be reduced to 1/100 at 
least.   

Then, we will explain how to reduce the required number 
of parameters to 1/100. 

As shown in Fig.1, the binarized representation with 1bit 
instead of 32bit reduced the parameters to 1/32. Further 

reduction to 1/2–1/4 can be done with the channel and 
spatial attentions by eliminating the redundant parameters 
that are not paid attention in the network. Once it could be 
done, almost parameters could be stored within the AI chip 
and the external DRAM accesses would be no longer 
required, resulting in a decreasing of the power 
consumption to 1/100.   

 

 
Fig. 1. Concept of how to reduce the energy consumption to 1/100.   This 

can only be done by reducing the # of parameters to 1/100. (a)Which 
parameters can be reduced (b) No more external DRAM accesses. 

The ResNets were introduced by He et al. to address the 
gradient vanishing issue [12]. We noticed that this invention 
causes to return to rise of exponentially increased 
parameters, resulting in an increased pressure for the 
stringent parameter reduction.  The SE attention technique 
[13–16], introduced by Hu et al., provides a better model 
accuracy with channel-wise recalibration. 

Lingling Li et al. integrated SE blocks into the HRNet 
[17], which is referred to as SE-HRNet. 

Xinyu Zhang et al., [18] improved the predictive 
accuracy of MRSE-Net in global remote sensing image 
water extraction tasks. 

What we noticed regarding the SE network is that this 
also can reduce the number of parameters by eliminating 
redundant channels.  

In this paper, we explore for the first time 1) how the SE 
attention mechanism works under the 1-bit quantization 
condition, 2) binarization of the output of the channel 
attention feature map, 3) activation function impact on the 
learning curves, and 4) evaluation of the channel attention 
effects with EigenCAM [19]. 

How the SE mechanism is changed when the above 1)-3) 
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are adopted and how much the EigenCAM can visualize 
those effects on the position accuracy of the heatmap have 
not been discussed in the previous papers. Thus, this paper 
is the first paper to propose and discuss on those topics. 

Based on the experiment results of SE attention, we have 
noticed that 1/2 of the channel can be pruned and the 1/2 of 
the parameters can be removed. 

We have also noticed that the spatial attention can be 
applied to further eliminate the parameters in the spatial 
direction. The CBAM [20] integrates both channel and 
spatial attention mechanisms, we will choose for our next 
experiment. 

In this paper, we explore the accuracy and speed impacts 
of the binarized SE attention and the channel attention 
binarized feature map in the context of ResNet14 trained on 
the CIFAR-10 dataset. The CIFAR-10 dataset [21], 
consisting of 60,000 32x32 color images in 10 classes, is 
used for evaluating the performance.  

We have proposed the channel feature maps binarization 
(FMB), in which some intermediate values in the channel 
attention during the early stages of training are forcibly 
binarized to investigate its impact on the model accuracy. 
This study compared the learning curves to investigate how 
much the proposed technique can contribute to reduce the 
error rate and required number of epochs to reach a certain 
error rate among the cases for using the different precisions: 
1) float32bit as a baseline, 2) 1bit without using the 
proposed FMB technique, and 3) 1bit with using the FMB.  
We also examined the impact of the activation function of 
the SE module.  

The main contributions of this article can be summarized 
as follows. 

1)   We have evaluated the effects of the attention with 
the heatmap position accuracy based on the EigenCAM. 

2)  We have investigated the activation functions impact 
of the activation functions on the model accuracy and speed 
of the learning curve in the binarized SE module.  

3) We have proposed the FMB technique and 
demonstrated that it is effective for enhancing model 
accuracy. 

The rest of this article is organized as follows. Section II 
elucidates the issues encountered with SEResNet14 under 
1bit binarization. In the Section III, we provide a detailed 
introduction to our proposed technique. We discussed the 
results in Section IV. In Section V, we conclude this article. 

II. ISSUE TO BE ADDRESSED 

A. Accuracy Drop Due to Lower Precision 
One primary concern about the binarized representation 

is that it can lead an unstable bang-bang behaviors in the 
learning curves, resulting in the drop of the accuracy and 
error reduction speed. This issue is particularly critical for 
deploying the models on the resource-constrained devices 
where power supply capability and the memory footprint 
are limited. 

AmirAli Abdolrashidi et al. [22] concluded that 4-bit 
quantization is the optimal choice for balancing accuracy 
and parameter quantity. When further shift from a 32bit 
floating-point precision to a binarized one inherently, it 
becomes difficult to ensure that the minute differences 

between weights can be distinguished because of 
approximating error (a,k,a quantization error). Many 
weights may get rounded off to the same value (e.g., +1/-1) 
due to the lack of granularity, resulting in a significant loss 
of precision. This causes an unstable bang-bang behavior in 
the learning curves, resulting in a drop of the error reduction 
speed.   

When directly quantizing the 32bit ResNet14 to 1bit, 
there is the significant drop of the accuracy, as shown in 
Table 1. 

 
Table 1. Top1 Acc. Under different quantization conditions 

 Cifar10 SVHN 
32bitResNet14 93.67% 96.15% 
1bitResNet14 91.07% 95.05% 

 
In some cases, post-quantization fine-tuning might be 

employed to recover some of the lost accuracy. This 
involves retraining the quantized model for a few epochs to 
adjust to its new, approximated weight values. However, 
even with fine-tuning, there might still be a noticeable drop 
in performance, especially when extremely low bit-widths 
(i.e., 1-bit) are chosen. 

That is to say that, while low-bit quantization offers 
advantages in memory savings and computational efficiency, 
it comes at the cost of accuracy due to the inherent 
approximation involved. The challenge is to find the sweet 
spot where the benefits of quantization outweigh the 
potential decrease in model performance. 

B. The Application of CNN Models in Miniaturized 
Devices Presents Challenges 
ResNet is a deep neural network that contains dozens to 

hundreds of layers. Each layer involves extensive matrix 
operations, presenting a significant challenge to 
computational capabilities. Small AI devices typically come 
equipped with low-power, low-performance processors, 
which struggle to handle such high complexity tasks. 
Quantization can somewhat reduce the model’s 
computational complexity, but the ResNet series improves 
accuracy by increasing the use of convolutional layers and 
residual connections. For image classification tasks that are 
not overly challenging, like CIFAR10 and SVHN, the 
exponential increase in neural connections due to an 
excessive number of convolutional layers is undesirable. 
We attempted to modify ResNet18 into ResNet14 by 
removing four convolutional layers in layer4, but this also 
resulted in considerable accuracy loss. Therefore, we 
expanded the network appropriately in the channel 
dimension, hoping to recover some of the lost accuracy. We 
then applied the SE channel attention mechanism to filter 
the increased number of channels and coupled it with model 
pruning in the channel dimension. This approach aimed to 
maximize model accuracy without significantly increasing 
computational demands. 

III. PROPOSED TECHNIQUES 

This section introduces our two proposed methods of A) 
replacing the activation function in the SE module and B) 
the method for binarizing the output of the channel feature 
maps (FMB). 
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A.   Activation Function of SE Module 
To determine the relevance and redundancy of feature 

maps in the channel dimension during practical application, 
we recorded the count of essential feature maps at various 
depths within the network. Our aim was to identify which 
connections might be superfluous and thus candidates for 
pruning. 

Our experiments revealed that choosing between the tanh 
and sigmoid activation functions within the SE module 
significantly impacts the model’s accuracy. Recent 
literature [23] suggests that under conditions of low-bit 
quantization, the Tanh function often surpasses its 
counterparts in performance. In our study, we evaluated the 
model’s accuracy using both tanh and sigmoid functions 
independently. This evaluation was conducted in 
conjunction with a novel method we proposed for the 
binarization of channel feature maps (FMB). 

B.   Channel Feature Map Binarization (FMB) 
In the context of the channel attention mechanism, we 

observed that channel attention is almost completed in the 
early stage of model training. When the model progresses 
and the accuracy reaches about 60-70%, the weights of the 
channel attention hardly change. This is due to the use of an 
excessively large number of channel expansions for 
relatively simple model classification tasks, where most of 
the channels are not actively utilized. However, some 
intermediate values present in the mid-phase of model 
training are eventually classified into the two extremes of 
the output range after several epochs. We might consider 
using some methods to categorize these intermediate values 
into the two extremes of the output range at the beginning 
of the training. 

In the selection of activation functions, considering the 
specific needs and characteristics of the model is crucial. In 
traditional neural networks, the Sigmoid function is often 
used as the activation function because it maps inputs to a 
fixed range (0 to 1), which is very useful for probability 
predictions or ensuring that the network output remains 
within a certain range. However, we are dealing with a 1bit 
quantized model, which uniquely quantizes the weights to -
1 and 1. Under these circumstances, using the Tanh 
(hyperbolic tangent) function as the activation function is 
more appropriate. 

In Eq. (1), 퐹 denotes the input feature map, which is a 
three-dimensional array with dimensions C×H×W, where C, 
H, and W represent the number of channels, the height, and 
the width, respectively. 

In Eq. (1), the variable 퐹 is used to represent the input 
feature map. This feature map is a three-dimensional array 
with its dimensions described as C×H×W. Here, C’ stands 
for the count of channels, ‘H’ signifies the height, and ‘W’ 
is the width of the feature map. 

퐹 ∈ 푅�×�×�                                     (1) 

In Eq. (2), 푀�   is depicted as the output of channel 
weights from the SE (Squeeze-and-Excitation) module. It 
maintains the structure of a three-dimensional array. 
However, in this setup, each of the 퐶 channels contains only 
a single element (1×1), indicating that each channel is 
assigned a distinct weight. 

푀� ∈ 푅�×�×�                                     (2) 

In Eq. (3), we are introduced to two distinct weight 
matrices, labeled 푊� and 푊�. These matrices are utilized in 
the fully connected layers within the SE module. The term 푟 
represents a reduction ratio, which serves to modulate both 
the complexity of the model and its parameter count. The 
matrix  푊�  is responsible for diminishing the number of 
channels from 퐶 down to 퐶/푟,. Conversely, 푊� functions to 
restore the number of channels from 퐶/푟,  back up to 퐶. For 
the purposes of this research, the reduction ratio is fixed at a 
value of 1. 

푊� ∈ 푅�/�×�  푎푛푑 푊� ∈ 푅�×�/�                     (3) 

In Eq. (4), the process begins with the application of 
global average pooling on the input feature map 퐹, which 
facilitates the extraction of global features for each channel. 
Subsequently, the architecture utilizes two fully connected 
layers, named 푊�  and 푊� ,, to discern and learn the 
interrelationships among the channels. An activation 
function, specifically ReLU (Rectified Linear Unit), is 
integrated between these two fully connected layers. The 
culmination of this process is the application of the Tanh 
function, which effectively outputs the weights  푀� for each 
individual channel. 

                      푀�(퐹) = 푇푎푛ℎ�퐴푣푔푃표표푙(퐹)� 

     = 푇푎푛ℎ�푊� �푅푒퐿푈 �푊��퐹���
� ����                           (4) 

Regarding the Tanh function, which generates output 
values ranging from -1 to 1, a threshold of 0 is employed. 
Consequently, any values surpassing 0 are assigned a value 
of 1, while those falling below 0 are designated as -1, as 
shown in Eq. (5).  

푀�
��푀�(퐹)� = � 1, 푀�(퐹) ≥ 0

−1, 푀�(퐹) < 0                     (5) 

In Eq. (6), the final output 퐹� of the SE Module is given 
by the product of the original feature map 퐹  with the 
adjusted channel weights 푀�

�  obtained above.

퐹� = 푀�
��푀�(퐹)� ⊙ 퐹                              (6) 

In Fig. 2, to more intuitively demonstrate the effect of the 
proposed FMB, we have plotted the frequency histograms 
of the channel feature maps output from the SE1 module 
before and after binarization. 

 

 
(a) w/o using FMB 
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(b) w/ using FMB 

Fig. 2. Comparison of output feature map value distributions between the 
cases of (a) w/o and (b) w/ using FMB technique. 

In PyTorch, the “torch.where” function is an extremely 
useful tool that allows for selecting elements from two 
tensors based on a condition. The functionality of Eq. (1) 
and Eq. (2) can be effectively implemented using 
“torch.where”. 

IV. RESULTS AND DISCUSSION 

A.   Impacts of Activation Function of  SE Module 
In the SE (Squeeze-and-Excitation) module, the choice of 

activation function is crucial for achieving the desired non-
linear transformation effect. The ReLU function is 
commonly used in the squeezing step to introduce non-
linearity, while the Sigmoid function is used to convert 
values between 0 and 1 to generate attention weights, a step 
that is commonly applied in the SE module. However, when 
we employ 1-bit quantization, quantizing weights to -1 and 
1, this approach encounters a problem in the 
implementation of channel attention. Channel attention 
requires multiplying the original weights by the channel 
feature maps calculated by the SE module. If we use the 
standard Sigmoid function to convert channel weights to 
values between 0 and 1, this introduces a bias. The reason 
for this bias is that the output range of the Sigmoid function 
(between 0 and 1) is inconsistent with the output range of 
the quantized weights (-1 to 1).  

B.   Impacts of FMB Technique 
FMB (Feature Map Binarization) aims to binarize 

channel attention weights early in model training to achieve 
an effect similar to 1-bit quantization.  

 

 
Fig. 3. The curves of the model error rate over training epochs with and 
without the use of the FMB method when the SE activation function is 

Sigmoid. 

We utilized the Sigmoid function and the Tanh function 
as the activation functions for output channel feature maps 
within the SE module, respectively. The Sigmoid function is 
the most commonly used in SE modules, whereas the Tanh 
function, with its output range more closely aligned with 
our binary quantization method, was also included in our 
tests. We randomly selected training results 10 times, with 
and without the use of the FMB method, and plotted the 
curves of model accuracy over training epochs as shown in 
Fig. 3 and Fig. 4. We observed that with both types of 
activation functions, the FMB method could enhance the 
model’s learning ability in the early stages. 

 

 
Fig. 4. The curves of the model error rate over training epochs with and 
without the use of the FMB method when the SE activation function is 

Tanh. 

Under the condition of a 1-bit quantized model, we also 
tried the SE (Squeeze-and-Excitation) module used 
HardTanh as the activation function to output channel 
weights. For the same input image, we have enhanced 
ResNet14 with two different approaches: one with the SE 
(Squeeze-and-Excitation) module and the other combining 
the SE module with the FMB (Feature Map Binarization) 
method. We compared the number of activated channels in 
different layers of the network for ResNet14 without the SE 
module to those with SE and SE w/FMB enhancements as 
shown in Table 2. 

 
Table 2. The activated channels in different layers 

Models Layer1 Layer2 Layer3 
ResNet14 80 160 320 
SE-ResNet14 43 83 175 
SE-ResNet14 w/FMB 35 78 163 

 
The FMB (Feature Map Binarization) method can reduce 

the number of activated channels with minimal loss in 
accuracy. Although the specific connections between 
channels across different layers are not known, a reduction 
in the number of activated channels across all layers 
necessarily leads to a decrease in the overall number of 
neuronal connections in terms of channel direction. This 
reduction could potentially streamline the network, making 
it more efficient without significantly compromising 
performance. 

As shown in Fig. 5, let’s consider a simple example: for 
channels suppose layer 1 has 3 neuron nodes, and layer 2 
has 6 neuron nodes. Typically, without applying channel 
attention, the connections between layer 1 and layer 2 are 
fully connected, as shown in the scenario without SE 
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(Squeeze-and-Excitation), resulting in 18 neural 
connections. After applying the SE channel attention 
mechanism, assume only 2 nodes in layer 1 and 4 nodes in 
layer 2 are activated, thus reducing the neural connections 
to 8. Similarly, applying the FMB (Feature Map 
Binarization) mechanism can further reduce the number of 
neural connections. This reduction is acceptable in the 
context of minimal accuracy loss because neural 
connections become increasingly complex as the network 
depth increases. Even if the use of FMB results in a slight 
reduction in the number of activated channels across 
different layers compared to not using it, connecting the 
neurons would significantly decrease the number of neural 
connections. This is reflected in the model as a reduction in 
model parameters and size. 

 

 
Fig. 5. Channels neural connections in different models. 

C.   F1-Score Test 
Precision and recall affect each other; ideally, we aim for 

both to be high, but they “constrain” each other: pursuing 
high precision leads to lower recall, and aiming for high 
recall usually impacts precision. Of course, we hope for the 
prediction results to have as high precision and recall as 
possible, but in some cases, these two metrics are 
contradictory. This necessitates a comprehensive 
consideration of both, and the most common method for this 
is the F1 score. We have also tested the F1 score of the 
model; for a model trained on the CIFAR-10 dataset, we 
conducted tests for each category within the dataset to 
determine the F1 score for each category. 

 
Table 3. F1 Scores for 1Bit quantized models across classification 

objectives 

 ResNet14 SE-ResNet14 
SE-ResNet14 
w/FMB 

Airplane 0.92 0.92 0.92 
Automobile 0.95 0.96 0.96 
Bird 0.88 0.89 0.89 
Cat 0.83 0.82 0.82 
Deer 0.91 0.9 0.89 
Dog 0.85 0.87 0.87 
Frog 0.93 0.93 0.93 
Horse 0.94 0.94 0.94 
Ship 0.95 0.95 0.95 
Truck 0.94 0.94 0.95 

 
In Table 3, it can be observed that the 1-bit quantized 

ResNet14 series is not very proficient in cat and dog 
recognition, with most of the model’s misclassifications 

occurring between these two categories. By adding the SE 
(Squeeze-and-Excitation) channel attention mechanism to 
this 1-bit quantized ResNet14, we can slightly improve the 
recognition accuracy for the classification task of “Dog”. 
Due to the limitations of the network model structure and 
low-bit quantization, the improvement in model accuracy 
achieved through the use of SE and FMB methods is limited. 

D.   Discussion 
In Table 3, it can be observed that the 1-bit quantized 

ResNet14 series is not very proficient in cat and dog 
recognition, with most of the model’s misclassifications 
occurring between these two categories. By adding the SE 
(Squeeze-and-Excitation) channel attention mechanism to 
this 1-bit quantized ResNet14, we can slightly improve the 
recognition accuracy for the classification task of “Dog”. 
Due to the limitations of the network model structure and 
low-bit quantization, the improvement in model accuracy 
achieved through the use of SE and FMB methods is limited. 
In the Fig. 6, we have selected the same “automobile” as the 
input image.  

  
Fig. 6. 32×32 Image of automobile. 

 
Fig. 7. EigenCAM results for different models: (a) 32bitResNet14, (b) 
1bitResNet14,  (c) 1bitSE-ResNet14, (d) 1bitSE-ResNet14 w/FMB. 

EigenCAM simplifies CNN decision-making 
visualization by using PCA on feature maps to identify 
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critical patterns and generate heatmaps, highlighting 
important image areas. It’s compatible with all CNNs 
without modifications, emphasizes significant data through 
PCA, and does not require class-specific information. This 
tool aids in model debugging, offers clear explanations in 
sensitive areas, and enhances interpretability, making AI 
decisions more transparent and understandable. 

From Fig. 7(a) to (d), they are respectively 
32bitResNet14, 1bitResNet14, 1bitSE-ResNet14, and 
1bitSE-ResNet14 w/FMB.  

We can see that the 1bitResNet14 model, after applying 
the SE and FMB methods, not only reduces the model size 
in the channel direction but also has a certain impact in the 
spatial direction. This is clearly visible from the CAM 
image in Fig. 7(d), where the outline of the car and the areas 
focused on by the model can be clearly seen. 

V. CONCLUSION 

This paper introduces the FMB (Feature Map 
Binarization) channel binarization technique and explores 
the optimal combination with activation functions to 
enhance model accuracy, as shown in Fig. 3. We also 
attempt to further streamline the model with more 
aggressive activation functions such as HardTanh and FMB 
without losing accuracy or with minimal accuracy loss, as 
detailed in Table 1 and Table 2. In Table 3, we tested the 
detection performance of different models for each 
classification task, which can serve as a basis for optimizing 
different classification tasks. In the discussion section, we 
explore various decisions including quantization, channel 
attention, and FMB, and analyze their EigenCAM results, 
allowing us to intuitively understand the advantages and 
disadvantages of different decisions. 
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