
SHA-ZA: Advanced Reinforcement Learning for Othello 
Mastery Using Proximal Policy Optimization 

Mohammed Yousif 

Independent Researcher 
Email: Mohammed.yah.yousif@gmail.com (M.Y.) 

Manuscript received July 12, 2024; revised August 3, 2024; accepted September 5, 2024; published February 25, 2025 

Abstract—This paper introduces SHA-ZA (Strategic 
Heuristic Agent with Zero-human Advancement), an advanced 
reinforcement learning agent trained to master the game of 
Othello, drawing inspiration from DeepMind's AlphaZero, 
which achieved exceptional proficiency in chess, shogi, and Go 
through self-play and reinforcement learning. SHA-ZA 
employs similar methodologies, utilizing self-play with 
multiprocessing and Proximal Policy Optimization (PPO) to 
achieve superior performance without prior human knowledge. 

Trained on the equivalent of over 650 years of continuous 
human experience, totaling 33,587,200 games, SHA-ZA 
underwent rigorous testing against diverse opponents, resulting 
in significant strategic gameplay advancements. The findings 
illustrate SHA-ZA's ability to surpass advanced-level minimax 
engines, highlighting the effectiveness of combining PPO and 
self-play for mastering complex board games like Othello. 

Keywords—reinforcement learning, Othello, AlphaZero, 
self-play, Proximal Policy Optimization (PPO), board games, 
artificial intelligence  

I. INTRODUCTION

The strategic board game Othello, commonly referred to as 
Reversi, was created in 1883 and is credited to Lewis 
Waterman and John W. Mollett. The game's modern form 
was popularized by Goro Hasegawa in Japan in 1971, and it 
quickly gained international acclaim, becoming a staple in 
competitive tournaments by 1977 [1]. The enormous state 
space and strategic complexity of Othello provide a 
significant challenge to artificial intelligence. 

Although the exact complexity remains elusive, estimates 
suggest it is on the order of 1028 [2], a magnitude surpassing 
1.33×109 times the number of grains of sand on Earth. To 
appreciate this scale, envision the hypothetical scenario of 
generating one billion Othello positions per second, a task 
demanding over 3.1797×1011 years—23.09 times the age of 
the universe. 

AlphaZero's [3] groundbreaking approach involved 
learning to play various complex games entirely through 
self-play. The generation of games utilized substantial 
hardware resources, with time per move comparable to 
classical search algorithms. This computational complexity is 
due to the use of Monte Carlo Tree Search (MCTS) [4], 
which performs a series of simulated games during each 
search. 

In recent years, the landscape of reinforcement learning 
has seen significant advancements with the introduction of 
Double Deep Q-learning [5] and policy gradient algorithms 
such as Trust Region Policy Optimization (TRPO) [6] and its 
enhanced version, Proximal Policy Optimization (PPO) [7], 
which is widely used in Reinforcement Learning with Human 
Feedback (RLHF) [8]. Furthermore, asynchronous methods 
like Asynchronous Advantage Actor-Critic (A3C) [9] and its 

synchronized variant, Advantage Actor-Critic (A2C) [10], 
have further enhanced the effectiveness and stability of 
reinforcement learning algorithms. 

In addition, recent advancements in deep learning 
techniques have significantly accelerated convergence rates 
and improved overall performance. SHA-ZA was trained 
using a collection of advanced reinforcement learning and 
deep learning techniques. Rather than running parallel 
simulations, the next move is inferred directly from the 
policy network. SHA-ZA achieves markedly faster execution 
times compared to its rivals, requiring less hardware for 
training while demonstrating superior gameplay 
performance. 

II. LITERATURE REVIEW

The game of Othello has served as a fertile ground for 
experimentation with various reinforcement learning 
techniques. From early off-policy temporal difference 
algorithms like Deep Q-learning [11] and Double Deep 
Q-Learning [5], to different evolutionary algorithms, and
eventually Monte-Carlo Tree Search (MCTS) [4].

The state representation in [2], which documents an early 
use of Q-learning, was based solely on the arrangement of 
white and black pieces. Rewards were deferred until the 
game's conclusion, contingent solely upon the outcome. The 
study investigated two feedforward multilayer network 
architectures: 
1) Single-NN Q-learner: Implemented a single multi-layer

feed-forward neural network with distinct outputs
corresponding to each action.

2) Multi-NN Q-learner: Employed a separate multi-layer
feed-forward neural network for each action.

A deterministic strategic policy that prioritized corner
locations and the enhancement of player’s mobility had been 
utilized for evaluation. After training for 15 million episodes, 
both agents outperformed the static mobility policy. Notably, 
the multi-NN Q-learner demonstrated a win rate of 79%. 

The study in [2] could benefit from a more sophisticated 
state representation. Additionally, comparing performance 
against stronger opponents would provide a more reliable 
assessment. 

The combination of Temporal Difference Learning (TDL) 
and Coevolutionary Learning (CEL) yielded a novel 
algorithm, which is described in [12]. CEL operates on the 
principle of survival and adaptation among a population's 
fittest players, whereas TDL compares current predictions 
with actual future rewards. These two concepts are integrated 
into the CTDL algorithm, which manages the population and 
alternates between TDL and CEL phases.  

CTDL surpassed both TDL and CEL in performance. It is 

International Journal of Machine Learning, Vol. 15, No. 1, 2025

17doi: 10.18178/ijml.2025.15.1.1173



  

suggested that the population variance introduced by CTDL 
prevents TDL from becoming stuck in suboptimal strategies, 
while also leading to superior long-term strategies compared 
to CEL alone. However, the use of evolutionary algorithms 
does not usually allow for the training of larger architectures 
due to computational overhead. 

An implementation of concepts derived from AlphaZero's 
[3] approach applied to Othello is discussed in [13]. 
Monte-Carlo Tree Search (MCTS) was employed to enhance 
the learning process and balancing exploration and 
exploitation. The agent displayed constant improvement 
against both random and greedy policies, eventually reaching 
superhuman performance. 

OLIVAW's [14] training process has demonstrated a more 
efficient approach to MCTS and self-play, achieving this 
through three key changes:  
1) Richer Training Data: The process utilizes training data 

that includes positions explored frequently during MCTS, 
rather than only the moves that were played.  

2) Dynamic MCTS Simulations: Instead of employing a 
fixed number of simulations, this approach allocates 
fewer simulations (100, 200, or 400) during the earlier 
training generations. As the agent improves in later 
generations, the number of simulations is increased (up to 
400), compared to the fixed 1600 simulations used by 
AlphaZero.  

3) Dynamic Training Window: The number of generations 
included in the training process gradually increased from 
the last 2 to the last 5 as training progresses. In contrast, 
AlphaZero uses a fixed window of the last 5×105 games 
(approximately 20 generations) for its training data. 

Evaluation was conducted through a series of games 
against human experts, where OLIVAW demonstrated 
superhuman performance. The training process lasted 30 
days using Google TPU v2-8 on Colaboratory [15]. 

The approaches detailed in [13] and [14] continue to rely 
on multiple simulations (playouts) to make a single decision. 
Furthermore, it remains uncertain if these methods have 
incorporated recent advancements in deep neural networks. 

III. MATERIALS AND METHODS 

A. PPO Loss Function Implementation 

Proximal Policy Optimization PPO [7]: is an on-policy 
reinforcement learning algorithm created by OpenAI. It 
optimizes the policy using a clipped surrogate objective 
function, proximal policy loss consists of three losses: 
1) Policy Surrogate Loss: use clipped probability ratio to 

prevent large, potentially harmful updates. 
2) Value Loss: Mean squared error loss between predicted 

and actual returns better say regression error. 

3) Entropy Loss: Encourages exploration by adding 
entropy to maintain randomness in action selection. 

𝐿௉௉ை ൌ 𝐿௖௟௜௣ ൅ 𝑐ଵ ⋅ 𝐿௩௙ െ 𝑐ଶ ⋅ 𝐿௘௡௧௥௢௣௬            (1)   

Here, 𝑐ଵ  and 𝑐ଶ  are, in order, the value and entropy 
coefficients. These two control the general behavior of the 
algorithm, including stability and exploration. 

The surrogate loss function computes the clipped ratio 
between the new policy 𝜋ఏ and the old policy 𝜋ఏ ௢௟ௗ  at state 

𝑠௧ The probability ratio for an action at is given by:  

𝑟௧ሺ𝜃ሻ ൌ
గഇ൫ 𝑎௧∣∣𝑠௧ ൯

గഇ೚೗೏൫ 𝑎௧∣∣𝑠௧ ൯
                                (2) 

𝑐𝑟ሺ𝜃,  𝜖ሻ ൌ 𝑐𝑙𝑖𝑝ሺ𝑟௧ሺ𝜃ሻ, 1 െ 𝜖, 1 ൅ 𝜖ሻ               (3) 

This ratio 𝑟௧ሺ𝜃ሻ measures how much the probability of 
choosing an action 𝑎௧ under the new policy 𝜋ఏ   has changed 
relative to the old policy. 𝜖 is a training hyperparameter used 
in calculating the clipped ratio 𝑐𝑟ሺ𝜃,  𝜖ሻ, which influences the 
stability of the training process. The advantage 𝐴௧ is defined 
as the difference between the actual and expected returns: 

𝐴௧ ൌ 𝑅ሺ𝑠௧, 𝑎௧ሻ െ 𝑉ሺ𝑠௧ሻ                                (4) 

𝑅ሺ𝑠௧, 𝑎௧ሻ is the return generated from taking an action 𝑎௧ 
at a state 𝑠௧ through the interaction of the agent with the game 
simulation. The complete formula for surrogate policy loss 
can be written as:  

𝐿௖௟௜௣ሺ𝜃ሻ ൌ െ𝐸௧ሾminሺ𝑟௧ሺ𝜃ሻ ⋅ 𝐴௧ ,  𝑐𝑟ሺ𝜃,  𝜖ሻ ⋅ 𝐴௧ሻሿ         (5) 

Mean Square Error 𝑀𝑆𝐸  has been used for calculating 
value loss 𝐿௩௙: 

𝐿௩௙  ൌ  𝑀𝑆𝐸൫𝑉ሺ𝑠௧ሻ, 𝑅ሺ𝑠௧, 𝑎௧ሻ൯                        (6) 

The entropy loss 𝐿௘௡௧௥௢௣௬ encourage exploration by 
penalizing certainty in action selection. This helps the agent 
avoid premature convergence to a suboptimal policy by 
maintaining a higher level of randomness in its actions: 

𝐿௘௡௧௥௢௣௬ ൌ െ ∑ 𝜋ఏ௔ ሺ 𝑎 ∣∣ 𝑠௧ ሻ ⋅ log൫𝜋ఏሺ 𝑎 ∣∣ 𝑠௧ ሻ൯        (7) 

The PPO algorithm was implemented in PyTorch, with the 
‘PPO_Loss’ class encapsulating the loss computation, 
including the implementation of equations 1 through 7. The 
‘forward’ method in this class takes inputs such as 
‘old_policy’, ‘new_policy’, ‘actions’, ‘value_head_output’, 
and ‘return_values’ to compute the total loss. Detailed code 
implementations can be found in the Appendix. 

B. Simulation Environment, State Representation, and 
Exploration Strategies  

A custom simulation environment compatible with 
PyTorch was developed using NumPy and Numba JIT for 
high-performance board operations and return computations. 
Additionally, a custom Minimax Engine with Alpha-Beta 
pruning was implemented similarly to measure the agent's 
performance more accurately. The ‘self_play’ method within 
the ‘OthelloBoard’ class accepts a model, shuffle depth, and 
device type as arguments, and returns pairs of boards and 
return values for each. The discount factor 𝛾 is automatically 
calculated when the board is initiated using the following 
formula: 

𝛾  ൌ  𝑒
ౢ౤ሺబ.బభሻ

ೞ೔೥೐మ ష ర                               (8) 

Where 𝑠𝑖𝑧𝑒 here is the board size, this version was train on 
boards size of 8 (𝑠𝑖𝑧𝑒 ൌ  8). The ‘parallelSelfPlay’ function 

International Journal of Machine Learning, Vol. 15, No. 1, 2025

18



  

in the ‘_othello’ module leveraged Python's multiprocessing 
module to efficiently run parallel simulations. Detailed code 
implementations for these components are also provided in 
the Appendix. 

The Board state 𝑠௧  at time 𝑡 is represented using three 
components: 
1) Legal Moves: positional representation of all legal moves 

an agent can take at a given state 𝑠௧. This is also used to 
restrict the agent from choosing invalid moves. 

2) Pieces Under Attach: positional representation of all 
opponent's pieces that can be captured within a single 
move. 

3) Board: All player's pieces are represented by 1, and all 
opponent's pieces are represented by -1. 

Exploration is integral to any reinforcement learning 
algorithm. In this study, each self-played game starts with a 
random board state that is shuffled with a random number of 
moves, between 0 and 32. Experiments were conducted to 
incorporate 𝜀 െ 𝑔𝑟𝑒𝑒𝑑𝑦 [16] exploration, but it was found to 
marginally slow down progress. Consequently, 𝜀 was set to 
0.0 during training the last version of SHA-ZA. The output of 
the Policy network comprises a 2D grid of probabilities. 
During self-play tournaments, each permissible action is 
assigned a nonzero probability of selection, akin to 
Boltzmann exploration [16]. 

 Fig. 1. On the right: the board state, showcasing a game position. On the left: 
the probability distribution output of the policy network, indicating the 

model’s decision-making process for the next move. 
 

Unlike Monte Carlo Tree Search (MCTS) [4] based 
methods, this approach selects actions directly from the 
probability distribution generated by the policy network, as 
depicted in Fig. 1, rather than through simulations. 

While training, rewards are assigned only at the end of 
each game. A win results in a reward of 1.0, a draw is 
rewarded with 0.0, and a loss incurs a reward of -1.0. The 
number and specific locations of player’s pieces do not 
contribute to the final reward. 

C. Neural Network Architecture and Attention Mechanism 

SHA-ZA's agent network architecture took advantage of 
recent advancements in the landscape of deep learning. The 
agent consisted of two networks: the policy network and the 
value network. The policy network maps the input state to a 
probability distribution over all actions, while the value 
network provides a holistic evaluation of the state. Both 
networks are based on ConvNeXt [17], a modern 
convolutional neural network architecture inspired by the 
design principles of vision transformers (ViTs) [18]. Leaky 
ReLU was used in place of the original GeLU activation 
function in the ConvNeXt block to increase inference speed. 

The Convolutional Block Attention Module (CBAM) [19] is 
another essential element that quickens the learning process. 
This update improves the neural network's feature 
representation by highlighting significant features and 
stifling unimportant features. It is divided into two 
consecutive sub-modules: 
1) Channel Attention Module: This emphasizes informative 

channels and suppresses less useful ones by computing 
channel-wise attention. 

2) Spatial Attention Module: This enhances important 
spatial features and suppresses irrelevant ones by 
computing spatial attention maps. 

Attention mechanisms are often applied at the end of a 
convolutional block, as demonstrated in [20], [21], and [22]. 
SHA-ZA distinguishes its architecture by positioning the 
CBAM layer after the expansion in the inverted bottleneck, 
as illustrated in Fig. 2's convolutional block architecture. This 
strategic placement enriches channel attention with a more 
diverse feature set, enabling subsequent layers within the 
block to leverage enhanced representations. Preliminary 
experiments with CBAM placement revealed that 
convergence was accelerated by this configuration for the 
problem at hand. 

 
Fig. 2. Convolutional block architecture of SHA-ZA, illustrating the 

sequence of operations within the network. 
 

The policy network consists of eight convolutional blocks, 
while the value network is composed of three similar blocks. 
The policy network takes as input the 3-component state 
representation described in the previous section. The value 
network, on the other hand, receives the state representation 
along with the output from the policy network as its input. 

D.  Training and Evaluation Strategies 

SHA-ZA’s training cycle, as illustrated in Fig. 3, diverges 
from those described in [3] and [23] in two significant ways. 
First, it omits the replay buffer typically used in off-policy 
methods, due to the adoption of PPO, an on-policy method. 
Although a combination of a state buffer with PPO was 
experimented with, it did not yield successful results for this 
application. Second, the training cycle incorporates extensive 
gradient accumulation, updating the agent only once after 

International Journal of Machine Learning, Vol. 15, No. 1, 2025

19



processing an average of 196,608 positions, which 
significantly enhanced training stability.  

The training cycle begins by using the previous policy and 
value networks to generate self-played games in parallel, 
utilizing 𝑁  processes, for the final version, 𝑁 ൌ 16 . Each 
process generates a specific number 𝐼  of self-played games 
After generating these games, the agent is updated using the 
PPO loss and 𝐴𝑑𝑎𝑚𝑊 [24] optimizer. After 𝐾  steps, the 
agent's performance is evaluated. 

Fig. 3. Logical structure of SHA-ZA's training cycle, highlighting key 
processes such as parallel game generation, PPO, and performance 

evaluation. 

In this case performance is evaluated every 25 steps (𝐾 ൌ
25 ), therefore, total number of simulated games in each 
cycle is: 

𝑁௚௔௠௘௦ ൌ 𝑁 ∙ 𝐼 ∙ 𝐾       (9) 

SHA-ZA's latest version was trained at an average speed of 
37.35 games per second during parallel simulations, 
generating an average of 1,792.8 positions per second. The 
training utilized a single Nvidia RTX A5000 GPU and an 
AMD Ryzen 9 CPU, covering a total of 33,587,200 games. 
An exponential decay scheduler managed the learning rate, 
while other hyperparameters were manually fine-tuned, as 
detailed in Table 1. 

For evaluation, the win probability of the new agent is 
measured against multiple opponents: 
1) The best Agent so far.
2) A random policy.
3) A minimax with alpha-beta pruning engine (depth = 7).
4) Another pre-trained SHA-ZA agent (reference model).

Each evaluation scenario has the agent play a
predetermined number of games beginning with a randomly 
shuffled board. The shuffle depth is a random number 

between 0 and 32 in all four circumstances. In situations a, b, 
and d, the agent plays 250 games. In scenario c, the number 
of games is limited to 125 due to the greater processing 
demands. 

The Minimax engine used in scenario c has a board 
evaluation function which calculates the absolute difference 
in the number of pieces between the two opponents. As it 
progresses along the game tree, it seeks to capitalize on this 
disparity. The detailed implementation of the Minimax 
engine is provided in the Appendix. 

The reference model in scenario d is an earlier version of 
SHA-ZA, with a shallower network architecture and trained 
for 2000 steps. This reference model serves as a more 
challenging opponent, providing a benchmark to measure the 
progress of the latest version of SHA-ZA. 

Table 1. Hyperparameters change during training 

Hyperparameter 
Value for steps  

0-3000 
Value for steps 

3000-5200 
Value for steps 

5200-6000 

Batch size 256 256 256 

Value Coefficient 
(c1) 

0.5 0.5 0.5 

Entropy Coefficient 
(c2) 

0.09 0.045 0.09 

Clip Parameter (𝜖) 0.2 0.2 0.2 

Learning Rate 
0.5e-4 

 (step 0) 
0.25e-4 

(step 3000) 
0.125e-4 

(step 6000) 

Games / Step 4096 8192 4096 

IV. RESULT AND DISCUSSION

SHA-ZA demonstrated significant progress during its 
training phase, reaching key performance milestones early on. 
Multiple checkpoints were recorded to track this 
advancement. By step 5,725, SHA-ZA achieved the 
following win rates: 
1) Against random policy: 100.0%.
2) Against Minimax (depth = 7): 96.748%.
3) Against the reference agent: 68.85%.

Following the training phase, SHA-ZA was exhaustively
tested in standard matches against Minimax agents using 
search depths ranging from 6 to 12. Tests were conducted 
with SHA-ZA in both initiating and non-initiating roles. As 
shown in Table 2, SHA-ZA consistently outperformed the 
Minimax algorithm across all tested depths. 

An intriguing observation from the fifth match against 
Minimax occurs between 0:22 and 0:32 in the video. During 
this period, SHA-ZA was significantly outnumbered in 
material, yet the value network’s output remained between 

International Journal of Machine Learning, Vol. 15, No. 1, 2025

20

Table 2. Performance comparison of SHA-ZA against minimax algorithm at 

varying depths 

Match Minimax Depth Initiating player Winner Video Link 

Match 1 6 SHA-ZA SHA-ZA video 1 

Match 2 6 Minimax SHA-ZA video 2 

Match 3 9 SHA-ZA SHA-ZA video 3 

Match 4 9 Minimax SHA-ZA video 4 

Match 5 12 SHA-ZA SHA-ZA video 5 

Match 6 12 Minimax SHA-ZA video 6 

https://youtu.be/EajVC9woUSM
https://youtu.be/o-xnlFO5vpk
https://youtu.be/KGrxUoulhko
https://youtu.be/_460eicf3s8
https://youtu.be/9qXpWrR48Hg
https://youtu.be/g2Wx_m37Oac


  

0.2 and 0.3, indicating an optimistic evaluation. This suggests 
that the model focuses primarily on the game's final outcome 
and is capable of making strategic sacrifices when necessary. 
A similar pattern is observed in the sixth and most 
challenging match: despite being outperformed throughout 
the game, SHA-ZA managed to turn the tables and secure a 
decisive victory with a margin of 50 pieces. 

A. Review of the Progress of the Training Process 

 
Fig. 4. Evolution of the win rate of SHA-ZA. 

 

 
Fig. 5. Evolution of win rate of new agent against the best agent. 

 

 
Fig. 6. The upper graph illustrates the progression of the three loss function 

components along with the total loss, while the lower graph depicts the 
advantage. 

 

An Overall consistent progress in terms of win rate was 
observed. 

As shown in Fig. 4 above, the reduction of the entropy 
coefficient 𝑐ଶ from 0.09 to 0.045, which theoretically reduces 
exploration during steps 3000 to 5200, led to a rapid 
performance improvement. Reverting the entropy coefficient 
back to 0.09 after step 5200 appeared to enhance the overall 
stability of the training process. 

In the above Fig. 5, as expected, during earlier steps the 

win rate against the best-yet model was high, indicating a 
quick progress of learning process, the average win rate 
against the best model came closer to 50% during late steps. 

In Fig. 6, entropy, policy, and value losses decreased 
slowly and studly during steps from 0 to 3000, the advantage 
was heavily alternating in the beginning, which is typical, all 
curves were affected by the change of hyperparameters 
between step 3000 and 5200, and by the change at 5200 as 
well. 

B. Review of Inference Performance and Training 
Duration 

Unlike Monti-Carlo Tree Search (MCTS) methods [4], 
there is no need to run multiple simulations for selecting an 
action. As shown in Table 3, this approach resulted in faster 
training and higher inference performance compared to the 
Minimax search algorithm. 

 
Table 3. average execution1 time per single move for different agents 

Agent Avg Time per Move  
Ratio to SHA-ZA’s 
CPU inference time 

SHA-ZA 
0.016 sec (CPU) 

0.00998 sec (GPU) 

1.0 
0.62375 

Minimax (depth=3) 0.002465 sec 0.154 

Minimax (depth=6) 0.0765 sec 4.78 

Minimax (depth=9) 5.13416667 sec 320.875 

1 Measurement were performed using google Colaboratory [15], GPU is 
Nvidia Tesla T4, CPU is Intel(R) Xeon(R) CPU @ 2.00GHz, Minimax is an 
agent that uses the minimax algorithm with alpha-beta pruning, SHA-ZA’s 
CPU move inference average time was used to calculate the ratios column. 

 

Training was conducted in two phases, with the second 
phase taking longer on average per step due to a change in 
hyperparameters after step 3000: 
 Phase 1 (steps 0 to 3000): 156.75 hours. 
 Phase 2 (steps 3000 to 6000): 264.9 hours. 

Considering the phases of the training cycle outlined in the 
methodology, the percentage of time allocated to each major 
phase is as follows: 
 Parallel self-play: ~59.9% of total time. 
 Model parameter updates: ~32.76% of total time. 
 Evaluation: ~7.29% of total time. 
In comparison, SHA-ZA achieved its results in just 

~58.53% of the total training time required by a similar 
program utilizing Monte Carlo Tree Search (MCTS), as 
reported in [14]. 

V. CONCLUSION 

The combination of Proximal Policy Optimization (PPO) 
and self-play has resulted in a high level of mastery of 
Othello, a complex, large state space game. SHA-ZA 
improved consistently throughout the training phase, 
eventually outperforming the Minimax engine at various 
depths, demonstrating advanced strategic planning. This was 
accomplished despite the Minimax algorithm requiring 
significantly more time for move inference.  

Compared to Monte Carlo Tree Search (MCTS), PPO 
eliminated the need for playouts (simulation of the game 
from the current position to a terminal state) and replay 
buffers, resulting in faster inference, lower hardware 
requirements, shorter training times, and a more streamlined 

International Journal of Machine Learning, Vol. 15, No. 1, 2025

21



  

system design. 
Furthermore, experiments with various network 

architectures revealed that using ConvNeXt and CBAM 
architectures significantly improved learning performance. 
Massive gradient accumulation significantly improved 
training stability, while hyperparameter adjustments after 
step 3000 resulted in additional notable performance 
improvements, further refining SHA-ZA's capabilities. 

CONFLICT OF INTEREST 

The author declares no conflict of interest. 

AUTHOR CONTRIBUTIONS 

The research, software, and writing were all conducted by 
Mohammed Yousif, who also approved the final version. 

REFERENCES 
[1] British Othello Federation, “Othello history,” British Othello, 

[Online]. Available: https://www.britishothello.org/othello-history 
(accessed on Jul. 7, 2024). 

[2] M. van Wezel and N. J. van Eck, “Reinforcement learning and its 
application to Othello,” EI 2005-47, Dec. 2005. 

[3] D. Silver et al., “A general reinforcement learning algorithm that 
masters chess, shogi, and go through self-play,” Science, vol. 362, no. 
6419, pp. 1140-1144, Dec. 2018. doi: 10.1126/science.aar6404. 

[4] C. B. Browne et al., “A survey of Monte Carlo tree search methods,” 
IEEE Trans. Comput. Intellig. AI Games, vol. 4, no. 1, pp. 1-43, Mar. 
2012, doi: 10.1109/TCIAIG.2012.2186810. 

[5] H. Van Hasselt, A. Guez, and D. Silver, ‘Deep reinforcement learning 
with double q-learning’, in Proc. the AAAI conference on Artificial 
Intelligence, 2016, vol. 30. 

[6] J. Schulman et al., “Trust Region Policy Optimization,” arXiv.org, 
2015.  

[7] J. Schulman et al., “Proximal Policy Optimization Algorithms,” arXiv, 
vol. arXiv:1707.06347, 2017.  

[8] T. Kaufmann et al., “A survey of reinforcement learning from human 
feedback,” arXiv preprint arXiv:2312.14925, 2023. 

[9] V. Mnih et al., “Asynchronous methods for deep reinforcement 
learning,” in Proc. The 33rd International Conference on Machine 
Learning, 20-22 Jun 2016, vol. 48, pp. 1928-1937. 

[10] Y. Wu et al., “Scalable trust-region method for deep reinforcement 
learning using Kronecker-factored approximation,” Neural 
Information Processing Systems, vol. 30, pp. 5279-5288, Jan. 2017. 

[11] V. Mnih, “Playing Atari with Deep Reinforcement Learning,” arXiv 
preprint arXiv:1312.5602, 2013.  

[12] M. Szubert, W. Jaskowski, and K. Krawiec, “Coevolutionary 
Temporal Difference Learning for Othello,” in Proc. 2009 IEEE 
Symposium on Computational Intelligence and Games, 2009, pp. 
104-111. 

[13] S. Thakoor, S. Nair, and M. Jhunjhunwala, “Learning to Play Othello 
Without Human Knowledge,” Stanford University, Final Project 
Report, 2016. 

[14] A. Norelli and A. Panconesi, “Olivaw: Mastering Othello without 
Human Knowledge, nor a Fortune,” IEEE Transactions on Games, 
vol. 15, no. 2, pp. 285-291, 2023. 

[15] T. Carneiro et al., “Performance Analysis of Google Colaboratory as a 
Tool for Accelerating Deep Learning Applications,” IEEE Access, vol. 
6, pp. 61677-61685, 2018. 

[16] S. Amin et al., “A Survey of Exploration Methods in Reinforcement 
Learning,” arXiv preprint arXiv:2109.00157, 2021. [Online]. 
Available: https://arxiv.org/abs/2109.00157. 

[17] Z. Liu et al., “A ConvNet for the 2020s,” in Proc. 2022 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), 
2022, pp. 11966-11976. 

[18] A. Dosovitskiy, “An Image Is Worth 16x16 Words: Transformers for 
Image Recognition at Scale,” arXiv preprint arXiv:2010.11929, 2020. 
[Online]. Available: https://arxiv.org/abs/2010.11929. 

[19] S. Woo et al., “Cbam: Convolutional block attention module,” in Proc. 
the European Conference on Computer Vision (ECCV), 2018, pp. 
3-19.  

[20] Z. Baozhou et al., “An Attention Module for Convolutional Neural 
Networks,” arXiv preprint arXiv:2108.08205, 2021.  

[21] R. D. Kwon et al., “ResNet with Integrated Convolutional Block 
Attention Module for Ship Classification Using Transfer Learning on 
Optical Satellite Imagery,” arXiv preprint arXiv:2404.02135, 2024.  

[22] M.-H. Guo et al., “Segnext: Rethinking convolutional attention design 
for semantic segmentation,” Advances in Neural Information 
Processing Systems, vol. 35, pp. 1140-1156, 2022. 

[23] J. Schrittwieser et al., “Mastering atari, go, chess and shogi by 
planning with a learned model,” Nature, vol. 588, no. 7839, pp. 
604-609, 2020. 

[24] I. Loshchilov and F. Hutter, “Decoupled Weight Decay 
Regularization,” arXiv preprint arXiv:1711.05101, 2017.  

 
 
Copyright © 2025 by the authors. This is an open access article distributed 
under the Creative Commons Attribution License which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original 
work is properly cited (CC BY 4.0). 

 

International Journal of Machine Learning, Vol. 15, No. 1, 2025

22

APPENDIX  

I have made my code publicly available to ensure 

transparency and reproducibility of my results. The code can 

be accessed via the following link: Click Here 

[GitHub:proximalpolicy-optimization-for-othello-mastery].

This includes the complete implementation of PPO and the 

training script. 

https://github.com/mohammed-tech-innovator/proximalpolicy-optimization-for-othello-mastery



