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Abstract—Support Vector Machines (SVM) is a well-known 

algorithm in machine learning due to its superior performance, 
and it also functions well in Multiple-Instance (MI) problems. 
Our study proposes a schematic algorithm for selecting 
instances based on Hausdorff distance, which can be adapted to 
SVMs as input vectors under MI setting. We confirmed that 
SVMs in MI settings when using this instance selection strategy 
outperformed original approaches based on experiments with 
five benchmark datasets. In addition, Task Execution Times 
(TETs) were reduced by more than 80% based on MissSVM. 
Therefore, it is noteworthy to consider this representation 
adaptation for SVMs in MI setting.   
 
Keywords—support vector machine, Margin, Hausdorff 

distance, representation selection, multiple-instance learning, 
machine learning 

I. INTRODUCTION 
Support Vector Machines (SVMS) have consistently 

received significant attention in the field of machine learning. 
Their superior performance is particularly recognized due to 
their generalization ability, which results from structural risk 
minimization. The technique is therefore considered robust, 
especially when dealing with the increased dimensionality of 
input vectors [1].  

MI-learning is a distinct area due to its hierarchical data 
structure and ambiguous label information. However, SVMs 
still work well primarily under the standard assumption that 
a positive bag contains at least one positive example while a 
negative bag consists of only negative examples. To satisfy 
this assumption, SVMs for MI-learning typically operate by 
assigning the same label information to the examples as to the 
entity or by treating missing values. Well-known algorithms 
in this area include mi-SVM, MI-SVM and MissSVM. These 
algorithms are notable because SVMs have been well adapted 
to the MI framework demonstrating comparable performance. 
However, the unbalanced and heterogeneous data 
characteristics remain a challenge.  

Our study focuses on these complex data structures, and 
proposes an algorithmic scheme for instance selection to 
achieve fast adaptation to SVM-type algorithms in MI-
learning without altering the original algorithm. To do this, 
we selected instances by slightly modifying Hausdorff 
distance to capture instances from each polarity collection, as 
its Max-Min operation is somewhat similar to the mechanism 
of SVMs. The rest of the paper is organized as follows. The 
next section briefly summarizes the related work and 
representation selection scheme in the Method section. In the 
Experiments and results, we evaluate our approach on five 
different benchmark datasets and compare task execution 
times (TETs) based on MissSVM. The results are described 
in detail. Finally, we discuss the strengths and weaknesses in 
the Discussion section. 

II. RELATED WORKS 
The learnability of Multiple Instance Learning (MI-

learning) has primarily been studied in the classification of an 
entity unit based on the given label information [1, 2]. As it 
might be expected, no single approach has dominated in 
terms of performance under this framework, but various 
derivative forms of Support Vector Machines (SVM) have 
been developed to solve the problem under the ambiguity [3, 
4]. Two transduction-based algorithms - mi-SVM and MI-
SVM [3] are well-known approaches for applying SVM to 
the MI-learning framework. In these methods, SVMs are 
repeatedly applied to the examples based on their label 
information, treating them as belonging to the same bags 
while all label information remains constant. The only 
difference between mi-SVM and MI-SVM lies in the 
definition of population for learning: MI-SVM makes use of 
the most positive examples to retrieve information while mi-
SVM utilizes all possible examples for learning. Additionally, 
MissSVM is another derivative form of SVM developed for 
MI-learning [5, 6]. This algorithm treats the label information 
of the examples in positive bags as missing values while those 
in negative bags are treated as negative. Then, it maximizes 
the margin on both labeled and unlabeled data by 
implementing SVM under the semi-supervised learning 
framework. As a result, it requires relatively more intensive 
computation time for optimization.  

Additionally, embedding-based approaches were also 
developed. Diverse-Density (DD) [7] might be the first 
approach based on instance-based embedding. Ultimately, 
this algorithm seeks the concept by the most likely estimator 
expecting that a higher proportion of positive bags will be 
centered around it. Under the same framework, Expectation 
Maximization (EM)-DD [8] systematically updates the most-
likely estimator using the Quasi-newton algorithm. Similarly, 
a graph-based approach was also developed by transforming 
an entity into a graph-like embedding, known as mi-graph [9]. 
In this approach, the entity is constructed by sets of instances, 
which releases the independence assumption. This approach 
also implements SVM on the similarity based on a graph-
kernel. Finally, Multiple-Instance Learning via Embedded 
Instance Selection (MILES) [10] also applies 1-norm SVM to 
the feature space, which is formed by maximal similarity. 
This approach enabled us to classify examples more 
effectively. According to prior studies, it is clear that SVM 
plays an important role in classification under the MI-
learning setting. Recently, a Distance-Aware Self-Attention-
Based Model (DAS-MIL) was proposed to handle images 
under the same setting, which takes into account the spatial 
relationship between patches, demonstrating fair 
performance [11]. Additionally, although it is not a fully 
supervised learning framework, proximal SVM demonstrates 
efficiency under the MI setting [12]. 
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III. METHODS 

A. Standard Assumption  
The problem can be defined as the standard assumption 

initially. The training set consists of pairs (퐵� , 푌�) for i=1,…, 
n, where 퐵�  and 푌�   represent the 푖��  bag and its 
corresponding label, respectively. Each 퐵� consists of a set of 
instances, i.e., 퐵� = �퐵��, … , 퐵���� where 퐵�� ∈  푅�, and if 푦�� 
is the label of 퐵��, 푌� is defined as follows. 

 

푦� = �
1 푖푓 ∃ 푦��: 푦�� =  +1

−1 푖푓 ∀ 푦��: 푦�� =  −1                       (1) 

 
(For simplicity, the collections of bags whose labels are +1, 

and -1 are denoted as 퐵� and  퐵�, respectively.) 

B. Brief Overview of SVMs    
If the case is linearly separable, the SVM algorithm seeks 

the separating hyperplane with the largest margin. When all 
data points in the training set satisfy the following constraint 
[1]:  

푦� ∙ (푥� ∙ 휔 + 푏) − 1 ≥ 0,   푓표푟 ∀푖                (2) 

Then, the problem becomes minimizing the Lagrangian of 
Eq. (4), with respect to 휔 and b, subject to 훼� ≥ 0, 

 
퐿� =  �

�
‖휔‖� − ∑ 훼�푦�(푥� ∙ 휔 + 푏)�

��� + ∑ 훼�
�
���         (4) 

 
Since 퐿� can be transformed into a dual form, it quickly 

becomes the maximization problem as shown in Eq. (5), 
 

퐿� =  ∑ 훼�� −  �
�

∑ 훼�훼�푦�푦�푥� ∙ 푥��,�                   (5) 
 
If 훼� > 0, the corresponding data points become support 

vectors, which lie on one of the hyperplanes.   

C. Selection Scheme for Representation  
One of the difficulties of MI-learning arises from the 

complex structure of the data as well as ambiguous label 
information. As a solution, our study proposes a 
representation selection method for each bag. In particular, 
when SVM or its derivatives are implemented as classifiers 
for MI-learning, this selection procedure proves to be 
especially useful and simplifies the structure. 

Our study proposes a balanced instance selection method 
to represent an entity based on the Hausdorff distance. The 
Hausdorff distance uniquely measures the difference between 
two metric spaces for two non-empty subsets, A and B, where 
r is a positive real number, as shown in Eq. (6) [13]. 

 
푑�(퐴, 퐵) = inf {푟: 퐴 ⸦ 푈�(퐵) 푎푛푑 푈�(퐴) ⸧ 퐵 }       (6) 

 
This original definition is well interpreted for different two 

vectors in various applications, and generalized to express the 
distance between any two sets using the ‘Max-Min’ operation 
as shown in Eq. (7), where 푑(푎 − 푏)  can represent any 
distance metric [14]. 

 
푑�(퐴, 퐵) = max (푑�(퐴, 퐵) 푎푛푑 푑�(퐵, 퐴))         (7) 

where 

푑�(퐴, 퐵) = max
� ∈�

 (min
�∈�

푑(푎 − 푏)) 
and 

푑�(퐵, 퐴) = max
� ∈�

 (min
�∈�

푑(푏 − 푎)) 

The ‘Max-Min’ operation represents the maximum 
distance any component of either set must travel to reach the 
other set as quickly as possible, resembling the definition of 
support vectors in SVM. In the MI-setting, if positivity is 
characterized by a single positive instance rather than 
multiple negative instances, the positive instance may be 
distant from the other negative instances. Therefore, it may 
not always be the best strategy to choose the closest instance 
to represent the entity. Based on this idea, we modified the 
Hausdorff distance metric for representation selection. (The 
pseudocode for the selection procedure is summarized in 
Algorithm 1.)       

Suppose that the collections of positive and negative 
entities are denoted as 퐵� and 퐵�, respectively.  Then, Eq. (7) 
can be adapted to our study as follows:   

 

푑�(퐵� , 퐵�) = max (푑�(퐵� , 퐵�) 푎푛푑 푑�(퐵�, 퐵�))     (8) 
 

Similarly,  

푑�(퐵� , 퐵�) = max
��� ∈��

 (min
�∈��

푑(푏�� − 푏)) 

but 

푑�
∗ (퐵�, 퐵�  ) = min

�|�∈��
( 푑�(퐵�, 퐵�)) 

In this procedure, one instance is selected based on the 
Hausdorff distance metric as it is, while the other, 
푑�

∗ (퐵�, 퐵�  ), is selected as the matched counterpart from the 
other set. This matching is determined using the conventional 
Hausdorff distance metric. The final selection is made by 
taking the maximum of these two distances. Similarly, 퐵� 
can be replaced with 퐵�. That is, each entity consists of a pair 
of instances representing opposite polarities, respectively. 
(The selection scheme is illustrated in Fig 1. The left plot 
shows the distribution of bags, while the middle and the right 
plot show the instances selected based on their distance from 
the sets with opposite polarities.) 

 

 
Fig. 1. An algorithmic selection using Hausdorff distance. 

 
Algorithm 1. algorithmic procedure: Pseudo code for selection 
Procedure: 
Require: 퐷� = {(퐵� , 푌�  )|푖 = 1, … , 푛} where 퐵� ∈ {퐵�, 퐵�}  
 
1: for 퐵� ∈  퐷� do: 
2:        {퐵�, 퐵�}  ← {퐵� ∖ 퐵� , 퐵� ∖ 퐵� } 
3:       \* compute H(퐵� , 퐵�)  *\ 

                푑�(퐵� , 퐵�) = max
��� ∈��

 (min
�∈��

푑(푏�� − 푏))  

           where 
                 푑�(퐵� , 퐵�) = max�푑�(퐵� , 퐵�) 푎푛푑 푑�(퐵�, 퐵�)�   
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 푑�
∗ (퐵�, 퐵� ) = min

�|�∈��
( 푑�(퐵�, 퐵�)) 

       
4:       \* compute H(퐵� , 퐵�) *\ 

푑�(퐵� , 퐵�) = max
��� ∈��

 (min
�∈��

푑(푏�� − 푏))  

           where 
                 푑�(퐵� , 퐵�) = max�푑�(퐵� , 퐵�) 푎푛푑 푑�(퐵�, 퐵�)�   

 푑�
∗ (퐵�, 퐵� ) = min

�|�∈��
( 푑�(퐵�, 퐵�)) 

 
5:        select  (j, j�) ← max

�∈��
퐻(퐵� , 퐵�) , max

��∈��
퐻(퐵� , 퐵�) 

6: end for 

D. Fast Adaptation for SVMs  
The objective function of SVMs fundamentally seeks to 

maximize the margin based on support vectors. The selected 
instances are chosen from the collections of each polarity 
within the entity. Therefore, we hypothesize that this 
selection will enable SVMs to work more efficiently and 
reduce the computational burden. 

The selected representation can be used for classification 
as input vectors. Since the data structure is maintained as MI-
learning, it can be quickly adapted to well-known MI-
algorithms based on SVMs without any alteration and with a 
much smaller size.  

 
Table 1. performance evaluation (Original vs. representation) 

Algorithms Data set1 Data set 2 Data set 3 Data set 4 Data set 5 

mi-SVM 
Original1 0.69±0.15 0.66±0.15 0.58±0.03 0.50±0.05 0.57±0.06 
Adapted2 0.79±0.10 0.74±0.15 0.75±0.09 0.51±0.06 0.75±0.08 

MI-SVM 
Original 0.77±0.15 0.61±0.08 0.81±0.07 0.50±0.07 0.70±0.10 
Adapted 0.79±0.12 0.76±0.14 0.77±0.08 0.57±0.13 0.76±0.13 

MissSVM 
Original 0.69±0.07 0.53±0.09 0.68±0.11 0.46±0.08 0.68±0.12 
Adapted 0.79±0.13 0.76±0.12 0.77±0.08 0.57±0.13 0.76±0.13 

MILES 
Original 0.43±0.09 0.61±0.08 0.52±0.03 0.51±0.05 0.51±0.02 

Adapted 0.43±0.09 0.61±0.08 0.57±0.02 0.55±0.03 0.51±0.01 
DL-SVM Adapted 0.57±0.09 0.48±0.12 0.49±0.07 0.45±0.07 0.52±0.06 

1Dataset 1: Musk 1; Dataset 2: Musk 2; Dataset3: Elephant sets; Dataset4: Fox sets; Dataset5: Tiger sests 
2Adapted indicate the way in the prior study proposed with the input vectors, and with the selected representation. 

  
Table 2. Comparison of task execution time (TETs)  (Original vs. representation) 

INPUTS FOLDS Data set1 Data set2 Data set3 Data set4 Data set5 

Original 

I 7.56 1753.61 66.12 66.95 46.40 
II 8.87 1826.83 72.53 70.70 49.92 

III 9.13 2375.31 74.30 73.74 46.01 
IV 8.26 1343.86 71.11 68.04 47.28 
V 9.04 1298.29 74.22 65.60 42.49 
VI 8.25 1623.70 73.26 67.27 43.80 
VII 8.02 2517.23 79.02 70.26 46.02 

Represen-
tative 

Selection 

I 3.77 84.48 10.21 11.50 3.61 
II 3.02 87.91 11.80 6.78 3.72 
III 2.91 87.76 5.25 4.36 3.48 
IV 3.11 66.62 4.55 12.51 9.41 
V 3.23 66.60 10.57 10.25 9.54 

VI 3.13 82.07 10.50 10.46 9.68 
VII 3.05 55.51 10.52 10.07 9.68 

1Dataset 1: Musk 1; Dataset 2: Musk 2; Dataset3: Elephant sets; Dataset4: Fox sets; Dataset5: Tiger sets 
 

IV. EXPERIMENTS AND RESULTS 
We evaluated the performance of the representation on 

five different benchmark datasets in terms of accuracy using 
mi-SVM, MI-SVM, MissSVM and MILES, all of which are 
based on SVMs classifiers for MI-learning. Additionally, we 
conducted DL-SVM [15]. DL-SVM was proposed to 
enhance the performance of deep learning by replacing the 
softmax activation layer at the top level of the architecture 
with a Linear SVM. Hence, its purpose is to demonstrate a 
possible implementation within a standard supervised 
learning framework, rather than solely enhancing 
performance itself. 

Initially, these benchmark algorithms were implemented 
on the datasets according to the original research description. 
Subsequently, the selected representation was integrated into 
these algorithms under the same setting. Each dataset was 
divided into 7-fold cross-validation with a balanced class 
distributional setting, and accordingly, 7-fold cross-

validation was conducted. The performance results were 
summarized as the average ±standard deviation in Table 1. 
The first run was labeled as `original', while the second run, 
after adapting the representation selection, was labeled as 
`adapted'. According to Table 1, we observed an 
improvement in overall accuracies when the proposed 
selection was adapted to the given MI-algorithms. 
Additionally, we confirmed that the selection can be 
performed within the supervised learning framework 
without any issues. 

Computational Efficiency   
The computational efficiency was evaluated by task 

execution time (TET) when the selected representation was 
integrated into the MI algorithms, compared to the original 
approach. The task was defined as the procedure from 
representation selection to prediction. TETs for MissSVM 
were summarized during 7-fold cross-validation over five 

International Journal of Machine Learning, Vol. 15, No. 1, 2025

15



 

 

independent runs, as MissSVM typically requires higher 
optimization time. Machine idle time and hardware latency 
were disregarded in the calculation. We used the CUDA 
version 12.4 computing platform with an Nvidia GeForce 
RTX 4090 graphics card, and TETs were measured using the 
‘time’ module in Python 3.9. Table 2 shows the TETs for 
both the original and the proposed approaches. The average 
TETs per dataset were 404.77s and 20.90s for the original 
and proposed approaches, respectively. These results 
indicate an approximate 83.40% reduction in average TETs 
when adopting the proposed representation in the algorithm. 

 

 
Fig. 2. Relative comparison of TETs.   

V. DISCUSSION 
SVMs are powerful algorithms in the machine learning 

domain. In addition to their superior performance, 
generalization errors are not related to dimensionality [1], 
[16], which is also an advantage in MI-learning. For this 
reason, various forms of SVMs have been developed to solve 
MI problems. Our study proposes an instance selection 
scheme based on the Hausdorff distance to enhance the 
performance of SVMs, as the Max-Min operation in the 
Hausdorff distance can be interpreted similarly to SVMs. 
Regarding the complex data structure in MI settings, 
instance selection can offer advantages to SVM classifiers, 
helping them perform within the standard supervised 
learning framework. SVM is known to be robust with respect 
to outliers, especially with a fine-tuned regularization 
parameter. In particular, when the data are high-dimensional, 
SVM focuses solely on the support vectors for classification, 
which helps avoid the risk of estimating a decision boundary 
that is sensitive to data-specific outliers. These aspects can 
also be leveraged in our approach. 

We evaluated the performance on five benchmark datasets, 
and confirmed that the adapted representation outperformed 
the original approach. Additionally, the computational 
burden was dramatically reduced by more than 80% in terms 
of average task execution times (TETs). However, there are 
still some weakness. Since information may not be fully 
provided, a more aggregated approach could yield better 
performance depending on the dataset. Moreover, one-to-
one mapping to measure distance can be affected by outliers. 

Nevertheless, it is noteworthy to consider the adaptation of 
the representation for SVMs due to its computational 
efficiency and strong performance. 
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