

Yu-Hsiang Chen1, Tay-Jyi Lin2,3, Juin-Ming Lu3, Tien-Fu Chen1,3*

1Department of Computer Science, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan
2Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan

3Electronic and Optoelectronic System Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
Email: tjlin@cs.ccu.edu.tw (T.J.L.); jm@itri.org.tw (J.-M.L.); tfchen@cs.nycu.edu.tw (T.-F.C.)

 *Corresponding author
Manuscript received January 4, 2024; revised January 20, 2024; accepted February 13, 2024; published September 20, 2024

Abstract—With the development of deep neural networks,

network compilation plays as an important role for achieving
faster execution time. Black-box optimization aims to find an
optimal solution by searching the design space. However, it
suffers from countless costly hardware measurements, which
greatly increase the compilation time. This paper aims to reduce
the compilation time by reducing hardware measurements. Our
solution includes adaptive early-stop, a self-tuning module that
controls tuning workflow according to real-time measurements,
a K-means cluster sampling module, a history database that
records and organizes measurement results for later usages, a
decoupled online tuning service. We extend the work leveraging
multiple users of online services, including shared history data
and module hyperparameter suggestions. Experiments show
our proposed approach achieves 52.39% reduction in hardware
measurements for auto-tuning with AutoTVM.

Keywords—TVM, neural network compilation, auto-tuning,

auto-optimization

I. INTRODUCTION
As deep neural networks (DNN) become larger and deeper,

the computational requirements gradually increase, resulting
in the development of accelerated model execution as well as
optimizing computations of DNN. In addition to specific AI
accelerators, such as Google’s TPU [1], neural network
compilers also play an important role by model optimizations
and implementations. Recently, many DNN compilers are
proposed, acting as a bridge between the neural network
framework and the hardware. For instance, TensorFlow XLA
compiler [2], Glow [3], and ONNC [4]. To surpass the hand-
written libraries [5], automated compilation with black-box
optimizations was developed. AutoTVM [6], built on top of
TVM [7], provides auto-tuning with the genetic algorithm
and gradient boosting trees like XGBoost [8]. However, it
still takes hours to optimize modern DNN models, such as
ResNet50 [9], not to mention deeper models such as
Inception or ResNet101.

This paper aims to reduce the hardware measurements and
accelerate the time-consuming auto-tuning with adaptive
workflow control, configuration sampling and a history
database. We also extend the local compilation to the online
service and provide history data sharing among different
users and hyperparameter suggestions for corresponding
tasks. We made the following contributions:
1) An adaptive early-stop module that self-tune maximum

trial to reduce hardware measurements without affecting
model performance. Our design can prevent missing an
optimal configuration or making unnecessary hardware
measurements;

2) A sampling module that uses K-means clustering to select
a centroid to represent a cluster of configurations;

3) A decoupled online tuning service that provides online
DNN tuning with decoupled configurations prediction
and history record on a remote server;

4) A shared history database module that records and shares
the tuning history for different targets and operations
among multiple users, providing initial training data for
cost model updating, which prevents training the cost
model from scratch;

5) Hyperparameter suggestion that provides hyperparameter
for modules by analyzing history data within the shared
history database and searches for optimal hyperparameter
for different tasks.

We evaluated the performance of our method with modern
DNN models (ResNet18, InceptionV2) on an Arm processor
(Toybrick RK3399), showing 53.33% reduction in hardware
measurements, compared with AutoTVM.

II. ADAPTIVE OPTIMIZATION FOR LOCAL TUNING
A. System Architecture
Fig. 1 outlines the overall architecture of our design. The

architecture contains both local optimizations and advanced
online service, which is combination of AutoTVM workflow
and Dr. Opt, an auto-guided hyperparameter tuning system.
While auto-tuning a DNN model, tunable operations in a
model are first converted into tasks. For each task, a tuner is
constructed, taking the task information and corresponding
history data as its input. The cost model, which predicts the
cost of a given configuration, uses these history data as the
initial training data. Rather than measuring the exact cost of
hardware, the optimizer uses an estimated cost from the cost
model to find the optimal configurations within the search
space. At each iteration, the candidate configurations selected
by the optimizer are sent to the sampling module. The
sampling algorithm selects a centroid to represent the cluster.
The candidates are then sent back to a local agent for physical
measurements. After measuring, the results are saved in both
a local log and server-side database. The adaptive early-stop
module then analyzes the measurement results and tunes the
maximum number of trials. This parameter controls the
maximum configurations to be measured on the physical
hardware. The measured configurations and measurement
results are reported back to the server and then transformed
into features for the cost model fitting. The tuner runs
iteratively until the trial count eventually reaches the
threshold. After auto-tuning, the measured configurations

International Journal of Machine Learning, Vol. 14, No. 3, 2024

92doi: 10.18178/ijml.2024.14.3.1164

with the minimum cost are saved and to be used in the code
generation stage.

Fig. 1. Adaptive workflow with AutoTVM.

B. Adaptive Early-Stop
The current approach requires the user to assign trial-count

and early-stopping for each task before running compilation.
Here, the trial-count represents the maximum number of
configurations to be measured, and early-stopping represents
the threshold to stop tuning in the halfway. For a given early-
stopping e, if no better configuration is found in e trials,
tuning will be early stopped. Here we face two challenges.
First, it is impractical for the user to assign a proper parameter
for each task. Setting the early-stop too low leads to
incorrectly stopped tuning before an optimal configuration is
found, especially when there are not enough initial data for
training and thus more iterations are needed. On the other
hand, setting the early-stop too high results in unnecessary
time-costly hardware measurements. Second, the current
design resets the counter of early-stops only when finding
better configurations. It does not take the measurement results

into consideration. When facing a significant performance
drop for a new batch, which often happens after finding an
optimal configuration, the tuner will not stop precisely. To
overcome the challenges, we propose an adaptive early-stop,
a module that adaptively tunes the maximum trials by real-
time measurement results. Fig. 2 shows the workflow of the
adaptive early-stop. A block contains multiple configurations
and corresponding results. When all configurations in a block
are measured, results are used to update the cost model. Here,
the configuration c represents the configuration with a
minimal cost within the current block, configuration c*
represents the configuration with a minimal cost within all
previous blocks, and f(x) represents the FLOPS of this
configuration. The adaptive early-stop module contains seven
parameters:

im: initial maximum trial
ir: increment ratio; controls the increment of maximum
trial for cases, where

dr: decrement ratio; controls the decrement of maximum
trial for cases, where

fr: FLOPS ratio; defines the size of the interval
ub: upper bound; limits the maximum value of variable
Add
lb: lower bound; limits the minimum value of variable
Add
Plan-size: number of configurations within a batch; the
default parameter in AutoTVM.

Fig. 2. Workload of the proposed adaptive early-stop.

After a batch of configurations have been measured, we

first compare f(c) with f(c*). If the value of f(c)/f(c*) falls into
the interval between 1 and 1-fr, the maximum trial is not
changed and we expect a higher probability to find a better
configuration in later batches. For cases where f(c) > f(c*),
the maximum trial is increased to encourage further hardware
measurements. As cases for f(c) < f(c*)×(1-fr), we decrease
the maximum trial. The upper bound and lower bound are

chosen to prevent dramatically changes on the maximum trial,
so the tuning will not accidently stopped, when a batch of
configurations have poor performance. If c performs better
than c*, c* will be used instead of c in later measurements.
The tuner starts a new iteration until the trail count exceeds
the maximum trial. Following this policy, the adaptive early-
stop module can predict the trend of later measurements and
will adaptively change the maximum trial. It stops the tuning

International Journal of Machine Learning, Vol. 14, No. 3, 2024

93

task in advance whenever the performance drops, and extends
the tuning workload if better configurations are possible. Also,
it handles the cases where the maximum performance slightly
increases. The situation happens when the minimum cost of
configurations of each batch are very close. While the
original approach simply resets the counter of early-stop, the
adaptive early-stop increases the maximum trial depending
on the improvements of performance.

C. Sampling
While analyzing the measured configuration for each task,

we notice that configurations selected by the cost model often
fall in some region within the search space, such as the
example shown in Fig. 3. Also, it appears that many of the
adjacent configurations turn out to have a similar cost.
Utilizing the characteristic, we use a sampling module to
sample the candidate configurations selected from the cost
model. This module uses the K-means clustering algorithm to
separate candidates to different clusters. Fig. 3 shows the
example of the K-means clustering. The algorithm aims to
partition n points into k clusters, in which each point belongs
to the cluster with the nearest mean. Iterate through the
number of clusters, the algorithm partitions configurations
into different clusters. We use the Euclidean distance of each
configuration in the search space as loss. For each iteration,
we check the total distance until reaching the threshold. The
centroid represents points within a corresponding cluster. The
number of cluster K represents the trade-offs between more
centroids resulting in better performance and fewer centroids
for a reduction of measurements. This prevents candidates
from the cost model from lying in a small region, which is
unfavorable for updating the cost model.

Fig. 3. Example of configurations with similar costs.

III. TRANSFER LEARNING AND HISTORY DATABASE

A. Tuning from History Database
When training the cost model from scratch for a given task,

it requires hundreds of hardware measurements for the cost
model to have an enough accuracy for prediction. AutoTVM
provides transfer learning to accelerate the tuning. Fig. 4
show the framework. Using a log file loading function, the
cost model of a new task loads the temporary history data
from the previous tasks as the initial training data. However,
there are limitations of this approach. First, the first few tasks
could not have enough data for training. Second, using data
from previous tasks sometimes result in low accuracy, as
these tasks have different arguments, including input sizes
and kernel sizes. In these cases, the tasks require ever more

hardware measurements to explore an optimal configuration,
compared with not using any initial training data. To solve
this problem, we create a history database implemented in
SQLite for recording the history data as shown in Fig. 4 (b).
Records are separated according to the task name and task
argument. Each row in a table contains measurement inputs
and measurement results. Measurement input records the
target hardware, task and the corresponding configuration,
and measurement result records the cost for this task. All
records in same table are measurement records of different
configurations for a same task. If the current task is found in
the database during tuning, the tuner will load the history data
from the corresponding table.

B. Data Organization
After multiple model tuning records are saved into the

database, there is often a case that a same configuration is
measured for several times, while the measured costs are
different. In the circumstances, we provide two maintenance
methods. The first is maintained by date. As each record
inside the table contains a date column recording the
measurement date, this method simply reserves the newest
record and removes all other duplicated records. The second
is maintained by average. When cleaning duplicated records,
for each configuration with multiple measurements, we
calculated the average cost of the duplicated records, and
replace these records with a new record with the average cost.

(a)

(b)

Fig. 4. Framework of transfer learning and history data.

IV. DECOUPLED ONLINE TUNING SERVICE
Our work is based on the structure of NNI and Dr. Opt.

With our specific tuner design for AutoTVM, users can easily
tune the DNN models and heavy computations for the cost
model and the optimizer, the database interaction and the
hyperparameter suggestion will be served on the server. This
allows the server maintainer to update different tuners and
algorithms without modifying the client-side program. Thus,
users can easily try different algorithms and features with
simple setting in the local tuner. As shown in Fig. 5, the
original tuner is decoupled into two parts, the client-side
agent and the server-side tuner. The client-side agent handles

International Journal of Machine Learning, Vol. 14, No. 3, 2024

94

the control flow and physical measurements on the hardware
device, while the server-side tuner deals with the cost model,
the shared history database and hyperparameter suggestion.

Fig. 5. Decoupled server tuner and local agent.

V. EXPERIMENTAL RESULTS
We first evaluate the performance of each component of

our proposed methods, and then eventually measure the
whole tuning process with the proposed techniques. The
target hardware is the Arm processor (Toybrick RK3399) and
the host device is 32-core Intel Xeon E5-2650 v2 at 2.60GHz.
We evaluate the three modules on ResNet18 and select the
convolution as the tuning operation. After optimization, the
convolutions are converted to 15 tasks. The comparison is
based on the hardware measurement count in tuning process.
Also, we make an end-to-end evaluation on multiple modern
DNN models, including ResNet18 and InceptionV2. We
compare the total compilation times and the total hardware
measurements required in auto-tuning. Fig. 6 shows the
comparison between the adaptive early-stop and AutoTVM
for inference time. The first configuration (trial count: 1500,
early-stop: 800) is a default value in the official document.
The second configuration (trial count: 800, early-stop: 400)
uses better parameters by the user. Comparing to manually-
selected parameters in second configuration, the adaptive
early-stop reduce 33.4% hardware measurements of tuning
ResNet18. It is worth noticed that in cases where suboptimal
configurations perform closely, such as task 12 and task 14,
early-stop gets reset with a minor performance increase. The
adaptive early-stop gains even more in these cases due to the
proposed mechanism. Fig. 7 shows the number of candidates
for measurements for tuning ResNet18 with and without
applying the sampling module with the inference time. In
average, the sampling module removes 16.5% of candidates
for hardware measurements. Performance of the sampling
module depends on the distribution of configurations within
the space. For cases where the candidates from the cost model
have similar combinations of knobs, sampling can have better
results. Fig. 8 shows the measurement counts for finding an
optimal configuration, The first configuration is running
auto-tuning without initial data for the cost model. This
means the cost model for all tasks are trained from scratch
and uses only measurement results of that task as the training
data. The second configuration uses a built-in transfer
learning mechanism, where a later task uses the measurement
results of the previous tasks as the initial training data. The
third configuration uses our proposed history database as the
initial training data. In average, the transfer learning gains

12.3% reduction in hardware measurements, and our history
database reduces 21.4% hardware measurements, compared
with the original transfer learning method.

Fig. 6. Evaluation of adaptive early-stop.

Fig. 7. Evaluation of sampling.

Fig. 8. Evaluation of measurement counts.

VI. RELATED WORKS
Frameworks such as PyTorch [10], TensorFlow [11],

Caffe2 [12], or MxNet [13] provide a solution for users to
design and train neural networks. DNN compilers mainly
focus on model optimizations in both graph-level and tensor-
level to increase the inference speed. Fig. 1 shows the overall
workflow of DNN compilation from a high-level framework
to the deployments on physical hardware devices, following
the structure of TVM. The first step is to transform the
framework model to the intermediate representation by a
frontend compiler. Second, target-independent and target-
dependent optimizations are applied. In this stage, some
compilers provide quantization to reduce computation
requirements. Target-independent optimizations, such as
operation fusion, constant folding, and layout transformation,
do not require information of the target hardware. Target-
dependent optimizations, such as the AlterOpLayout pass, act
differently depending on the selected target hardware. Further
tensor-level optimizations leverage loop transformation or
cache locality. Some researchers proposed templates to be
used as the search space for operations of different targets

International Journal of Machine Learning, Vol. 14, No. 3, 2024

95

[14, 15]. The black-box optimizations require time-
consuming measurements of each configuration within
schedule space, which greatly increase the compilation time.
Many studies for auto-tuning had proposed different methods
for accelerating the compilation. In the framework of
Chameleon [16, 17], two approaches were proposed to speed
up the compilation. First, a model optimizer using simulated
annealing is replaced with a reinforcement learning model,
which learns the trend of the configuration cost and finds an
optimal configuration. Second, a new sampling module was
proposed to reduce similar configurations and predict an
optimal configuration by combining frequently-seen knob
entities. While the default tuner in AutoTVM uses XGBoost
and a genetic algorithm, another research [18] applies Greedy
Best-First-Search (G-BFS) and Neighborhood Actor
Advantage Critic (N-A2C) to search an optimal configuration
for matrix multiplications to gain a better performance.

VII. CONCLUSION
We proposed multiple optimizations for accelerating the

DNN compilation. First, we proposed the adaptive early-stop,
sampling and the history database, to reduce hardware
measurements in local tuning. Second, we designed an online
tuning service, which decoupled history-data-related works
to server, and provided data sharing among multiple users and
hyperparameter suggestion. Experimental results show that
our approach greatly reduces hardware measurements for
auto-tuning and effectively accelerates the model compilation.
With the updated cost model and database organization, it has
potential to gain ever better performance.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
Yu-Hsiang Chen and Tien-Fu Chen conducted the research,

Yu-Hsiang Chen and Juin-Ming Lu analyzed the data; Tien-
Fu Chen and Tay-Jyi wrote the paper; all authors had
approved the final version.

FUNDING
This research was funded by National Science and

Technology Council, grant number NSTC 113-2622-8-A49-

009.

ACKNOWLEDGMENT
The authors wish to thank Dr. Shih-Chieh Chang of

Industrial Technology Research Institute for his valuable
comments and supports.

REFERENCES
[1] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor

processing unit,” in Proc. ISCA, 2017, pp. 1–12
[2] XLA. [Online]. Available: https://www.tensorflow.org/xla
[3] N. Rotem et al., “Glow: graph lowering compiler techniques for neural

networks,” arXiv abs/1805.00907, 2018.
[4] W. F. Lin et al., “ONNC: A compilation framework connecting ONNX

to proprietary deep learning accelerators,” in Proc. AICAS, 2019.
[5] S. Chetlur et al., “cuDNN: efficient primitives for deep learning,” arXiv

abs/1410.0759, 2014.
[6] T. Chen et al., “Learning to optimize tensor programs,” in Proc.

NeurIPS, 2018, pp. 3393–3404.
[7] T. Chen et al., “TVM: An automated end-to-end optimizing compiler

for deep learning,” in Proc. OSDI, 2018, pp. 579–594.
[8] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”

in Proc. KDD, 2016, pp. 785–794.
[9] P. Goyal et al., “Accurate, large minibatch SGD: training ImageNet in

1 hour,” arXiv abs/1706.02677, 2017.
[10] PyTorch. [Online]. Available: https://pytorch.org/
[11] M. Abadi et al., “Tensorflow: A system for large-scale machine

learning,” in Proc. OSDI, 2016, pp. 265–283.
[12] T. Chen et al., “MXNet: A flexible and efficient machine learning

library for heterogeneous distributed systems,” in Proc. LearningSys,
2015.

[13] Y. Liu et al., “Optimizing CNN model inference on CPUs,” in Proc.
USENIX ATC, 2019, pp. 1025–1040.

[14] L. Wang et al., “A unified optimization approach for CNN model
inference on integrated GPUs,” in Proc. ICPP, 2019, pp. 1–10.

[15] B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and H. Esmaeilzadeh,
“Chameleon: Adaptive code optimization for expedited deep neural
network compilation,” in Proc. ICLR, 2020.

[16] B. H. Ahn, P. Pilligundla, and H. Esmaeilzadeh, “Reinforcement
learning and adaptive sampling for optimized DNN compilation,”
arXiv abs/1905.12799, 2019.

[17] H. Zhang, X. Cheng, H. Zang, and D. H. Park, “Compiler-level matrix
multiplication optimization for deep learning,” arXiv: 1909.10616,
2019.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” in Proc. NIPS,
2012.

Copyright © 2024 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Machine Learning, Vol. 14, No. 3, 2024

96

	Microsoft Word - ICMRE2024-RE-252-IJML-周阳-3

