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Abstract—With the development of deep neural networks, 

network compilation plays as an important role for achieving 
faster execution time.  Black-box optimization aims to find an 
optimal solution by searching the design space. However, it 
suffers from countless costly hardware measurements, which 
greatly increase the compilation time. This paper aims to reduce 
the compilation time by reducing hardware measurements. Our 
solution includes adaptive early-stop, a self-tuning module that 
controls tuning workflow according to real-time measurements, 
a K-means cluster sampling module, a history database that 
records and organizes measurement results for later usages, a 
decoupled online tuning service. We extend the work leveraging 
multiple users of online services, including shared history data 
and module hyperparameter suggestions. Experiments show 
our proposed approach achieves 52.39% reduction in hardware 
measurements for auto-tuning with AutoTVM. 
 
Keywords—TVM, neural network compilation, auto-tuning, 

auto-optimization 

I. INTRODUCTION 
As deep neural networks (DNN) become larger and deeper, 

the computational requirements gradually increase, resulting 
in the development of accelerated model execution as well as 
optimizing computations of DNN. In addition to specific AI 
accelerators, such as Google’s TPU [1], neural network 
compilers also play an important role by model optimizations 
and implementations. Recently, many DNN compilers are 
proposed, acting as a bridge between the neural network 
framework and the hardware. For instance, TensorFlow XLA 
compiler [2], Glow [3], and ONNC [4]. To surpass the hand-
written libraries [5], automated compilation with black-box 
optimizations was developed. AutoTVM [6], built on top of 
TVM [7], provides auto-tuning with the genetic algorithm 
and gradient boosting trees like XGBoost [8]. However, it 
still takes hours to optimize modern DNN models, such as 
ResNet50 [9], not to mention deeper models such as 
Inception or ResNet101.  

This paper aims to reduce the hardware measurements and 
accelerate the time-consuming auto-tuning with adaptive 
workflow control, configuration sampling and a history 
database. We also extend the local compilation to the online 
service and provide history data sharing among different 
users and hyperparameter suggestions for corresponding 
tasks. We made the following contributions:  
1) An adaptive early-stop module that self-tune maximum 

trial to reduce hardware measurements without affecting 
model performance. Our design can prevent missing an 
optimal configuration or making unnecessary hardware 
measurements;  

2) A sampling module that uses K-means clustering to select 
a centroid to represent a cluster of configurations;  

3) A decoupled online tuning service that provides online 
DNN tuning with decoupled configurations prediction 
and history record on a remote server;  

4) A shared history database module that records and shares 
the tuning history for different targets and operations 
among multiple users, providing initial training data for 
cost model updating, which prevents training the cost 
model from scratch; 

5) Hyperparameter suggestion that provides hyperparameter 
for modules by analyzing history data within the shared 
history database and searches for optimal hyperparameter 
for different tasks.  

We evaluated the performance of our method with modern 
DNN models (ResNet18, InceptionV2) on an Arm processor 
(Toybrick RK3399), showing 53.33% reduction in hardware 
measurements, compared with AutoTVM.  

II.  ADAPTIVE OPTIMIZATION FOR LOCAL TUNING 
A. System Architecture 
Fig. 1 outlines the overall architecture of our design. The 

architecture contains both local optimizations and advanced 
online service, which is combination of AutoTVM workflow 
and Dr. Opt, an auto-guided hyperparameter tuning system. 
While auto-tuning a DNN model, tunable operations in a 
model are first converted into tasks. For each task, a tuner is 
constructed, taking the task information and corresponding 
history data as its input. The cost model, which predicts the 
cost of a given configuration, uses these history data as the 
initial training data. Rather than measuring the exact cost of 
hardware, the optimizer uses an estimated cost from the cost 
model to find the optimal configurations within the search 
space. At each iteration, the candidate configurations selected 
by the optimizer are sent to the sampling module. The 
sampling algorithm selects a centroid to represent the cluster. 
The candidates are then sent back to a local agent for physical 
measurements. After measuring, the results are saved in both 
a local log and server-side database. The adaptive early-stop 
module then analyzes the measurement results and tunes the 
maximum number of trials. This parameter controls the 
maximum configurations to be measured on the physical 
hardware. The measured configurations and measurement 
results are reported back to the server and then transformed 
into features for the cost model fitting. The tuner runs 
iteratively until the trial count eventually reaches the 
threshold. After auto-tuning, the measured configurations 
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with the minimum cost are saved and to be used in the code 
generation stage. 

 
Fig. 1. Adaptive workflow with AutoTVM. 

B. Adaptive Early-Stop 
The current approach requires the user to assign trial-count 

and early-stopping for each task before running compilation. 
Here, the trial-count represents the maximum number of 
configurations to be measured, and early-stopping represents 
the threshold to stop tuning in the halfway. For a given early-
stopping e, if no better configuration is found in e trials, 
tuning will be early stopped. Here we face two challenges. 
First, it is impractical for the user to assign a proper parameter 
for each task. Setting the early-stop too low leads to 
incorrectly stopped tuning before an optimal configuration is 
found, especially when there are not enough initial data for 
training and thus more iterations are needed. On the other 
hand, setting the early-stop too high results in unnecessary 
time-costly hardware measurements. Second, the current 
design resets the counter of early-stops only when finding 
better configurations. It does not take the measurement results 

into consideration. When facing a significant performance 
drop for a new batch, which often happens after finding an 
optimal configuration, the tuner will not stop precisely. To 
overcome the challenges, we propose an adaptive early-stop, 
a module that adaptively tunes the maximum trials by real-
time measurement results. Fig. 2 shows the workflow of the 
adaptive early-stop. A block contains multiple configurations 
and corresponding results. When all configurations in a block 
are measured, results are used to update the cost model. Here, 
the configuration c represents the configuration with a 
minimal cost within the current block, configuration c* 
represents the configuration with a minimal cost within all 
previous blocks, and f(x) represents the FLOPS of this 
configuration. The adaptive early-stop module contains seven 
parameters: 

im: initial maximum trial  
ir: increment ratio; controls the increment of maximum 
trial for cases, where 

 

dr: decrement ratio; controls the decrement of maximum 
trial for cases, where 

 

fr: FLOPS ratio; defines the size of the interval  
ub: upper bound; limits the maximum value of variable 
Add  
lb: lower bound; limits the minimum value of variable 
Add  
Plan-size: number of configurations within a batch; the 
default parameter in AutoTVM. 

 

 
Fig. 2. Workload of the proposed adaptive early-stop. 

 
After a batch of configurations have been measured, we 

first compare f(c) with f(c*). If the value of f(c)/f(c*) falls into 
the interval between 1 and 1-fr, the maximum trial is not 
changed and we expect a higher probability to find a better 
configuration in later batches. For cases where f(c) > f(c*), 
the maximum trial is increased to encourage further hardware 
measurements. As cases for f(c) < f(c*)×(1-fr), we decrease 
the maximum trial. The upper bound and lower bound are 

chosen to prevent dramatically changes on the maximum trial, 
so the tuning will not accidently stopped, when a batch of 
configurations have poor performance. If c performs better 
than c*, c* will be used instead of c in later measurements. 
The tuner starts a new iteration until the trail count exceeds 
the maximum trial. Following this policy, the adaptive early-
stop module can predict the trend of later measurements and 
will adaptively change the maximum trial. It stops the tuning 
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task in advance whenever the performance drops, and extends 
the tuning workload if better configurations are possible. Also, 
it handles the cases where the maximum performance slightly 
increases. The situation happens when the minimum cost of 
configurations of each batch are very close. While the 
original approach simply resets the counter of early-stop, the 
adaptive early-stop increases the maximum trial depending 
on the improvements of performance. 

C. Sampling 
While analyzing the measured configuration for each task, 

we notice that configurations selected by the cost model often 
fall in some region within the search space, such as the 
example shown in Fig. 3. Also, it appears that many of the 
adjacent configurations turn out to have a similar cost. 
Utilizing the characteristic, we use a sampling module to 
sample the candidate configurations selected from the cost 
model. This module uses the K-means clustering algorithm to 
separate candidates to different clusters. Fig. 3 shows the 
example of the K-means clustering. The algorithm aims to 
partition n points into k clusters, in which each point belongs 
to the cluster with the nearest mean. Iterate through the 
number of clusters, the algorithm partitions configurations 
into different clusters. We use the Euclidean distance of each 
configuration in the search space as loss. For each iteration, 
we check the total distance until reaching the threshold. The 
centroid represents points within a corresponding cluster. The 
number of cluster K represents the trade-offs between more 
centroids resulting in better performance and fewer centroids 
for a reduction of measurements. This prevents candidates 
from the cost model from lying in a small region, which is 
unfavorable for updating the cost model. 

 

 
Fig. 3. Example of configurations with similar costs. 

III. TRANSFER LEARNING AND HISTORY DATABASE 

A. Tuning from History Database 
When training the cost model from scratch for a given task, 

it requires hundreds of hardware measurements for the cost 
model to have an enough accuracy for prediction. AutoTVM 
provides transfer learning to accelerate the tuning. Fig. 4 
show the framework. Using a log file loading function, the 
cost model of a new task loads the temporary history data 
from the previous tasks as the initial training data. However, 
there are limitations of this approach. First, the first few tasks 
could not have enough data for training. Second, using data 
from previous tasks sometimes result in low accuracy, as 
these tasks have different arguments, including input sizes 
and kernel sizes. In these cases, the tasks require ever more 

hardware measurements to explore an optimal configuration, 
compared with not using any initial training data. To solve 
this problem, we create a history database implemented in 
SQLite for recording the history data as shown in Fig. 4 (b). 
Records are separated according to the task name and task 
argument. Each row in a table contains measurement inputs 
and measurement results. Measurement input records the 
target hardware, task and the corresponding configuration, 
and measurement result records the cost for this task. All 
records in same table are measurement records of different 
configurations for a same task. If the current task is found in 
the database during tuning, the tuner will load the history data 
from the corresponding table. 

B. Data Organization 
After multiple model tuning records are saved into the 

database, there is often a case that a same configuration is 
measured for several times, while the measured costs are 
different. In the circumstances, we provide two maintenance 
methods. The first is maintained by date. As each record 
inside the table contains a date column recording the 
measurement date, this method simply reserves the newest 
record and removes all other duplicated records. The second 
is maintained by average. When cleaning duplicated records, 
for each configuration with multiple measurements, we 
calculated the average cost of the duplicated records, and 
replace these records with a new record with the average cost. 

 
(a) 

 
(b) 

Fig. 4. Framework of transfer learning and history data. 

IV. DECOUPLED ONLINE TUNING SERVICE 
Our work is based on the structure of NNI and Dr. Opt. 

With our specific tuner design for AutoTVM, users can easily 
tune the DNN models and heavy computations for the cost 
model and the optimizer, the database interaction and the 
hyperparameter suggestion will be served on the server. This 
allows the server maintainer to update different tuners and 
algorithms without modifying the client-side program. Thus, 
users can easily try different algorithms and features with 
simple setting in the local tuner. As shown in Fig. 5, the 
original tuner is decoupled into two parts, the client-side 
agent and the server-side tuner. The client-side agent handles 
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the control flow and physical measurements on the hardware 
device, while the server-side tuner deals with the cost model, 
the shared history database and hyperparameter suggestion. 

 
Fig. 5. Decoupled server tuner and local agent. 

V. EXPERIMENTAL RESULTS 
We first evaluate the performance of each component of 

our proposed methods, and then eventually measure the 
whole tuning process with the proposed techniques. The 
target hardware is the Arm processor (Toybrick RK3399) and 
the host device is 32-core Intel Xeon E5-2650 v2 at 2.60GHz. 
We evaluate the three modules on ResNet18 and select the 
convolution as the tuning operation. After optimization, the 
convolutions are converted to 15 tasks. The comparison is 
based on the hardware measurement count in tuning process. 
Also, we make an end-to-end evaluation on multiple modern 
DNN models, including ResNet18 and InceptionV2. We 
compare the total compilation times and the total hardware 
measurements required in auto-tuning. Fig. 6 shows the 
comparison between the adaptive early-stop and AutoTVM 
for inference time. The first configuration (trial count: 1500, 
early-stop: 800) is a default value in the official document. 
The second configuration (trial count: 800, early-stop: 400) 
uses better parameters by the user. Comparing to manually-
selected parameters in second configuration, the adaptive 
early-stop reduce 33.4% hardware measurements of tuning 
ResNet18. It is worth noticed that in cases where suboptimal 
configurations perform closely, such as task 12 and task 14, 
early-stop gets reset with a minor performance increase. The 
adaptive early-stop gains even more in these cases due to the 
proposed mechanism. Fig. 7 shows the number of candidates 
for measurements for tuning ResNet18 with and without 
applying the sampling module with the inference time. In 
average, the sampling module removes 16.5% of candidates 
for hardware measurements. Performance of the sampling 
module depends on the distribution of configurations within 
the space. For cases where the candidates from the cost model 
have similar combinations of knobs, sampling can have better 
results. Fig. 8 shows the measurement counts for finding an 
optimal configuration, The first configuration is running 
auto-tuning without initial data for the cost model. This 
means the cost model for all tasks are trained from scratch 
and uses only measurement results of that task as the training 
data. The second configuration uses a built-in transfer 
learning mechanism, where a later task uses the measurement 
results of the previous tasks as the initial training data. The 
third configuration uses our proposed history database as the 
initial training data. In average, the transfer learning gains 

12.3% reduction in hardware measurements, and our history 
database reduces 21.4% hardware measurements, compared 
with the original transfer learning method. 

 
Fig. 6. Evaluation of adaptive early-stop. 

 
Fig. 7. Evaluation of sampling. 

 
Fig. 8. Evaluation of measurement counts. 

VI. RELATED WORKS 
Frameworks such as PyTorch [10], TensorFlow [11], 

Caffe2 [12], or MxNet [13] provide a solution for users to 
design and train neural networks. DNN compilers mainly 
focus on model optimizations in both graph-level and tensor-
level to increase the inference speed. Fig. 1 shows the overall 
workflow of DNN compilation from a high-level framework 
to the deployments on physical hardware devices, following 
the structure of TVM. The first step is to transform the 
framework model to the intermediate representation by a 
frontend compiler. Second, target-independent and target-
dependent optimizations are applied. In this stage, some 
compilers provide quantization to reduce computation 
requirements. Target-independent optimizations, such as 
operation fusion, constant folding, and layout transformation, 
do not require information of the target hardware. Target-
dependent optimizations, such as the AlterOpLayout pass, act 
differently depending on the selected target hardware. Further 
tensor-level optimizations leverage loop transformation or 
cache locality. Some researchers proposed templates to be 
used as the search space for operations of different targets 
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[14, 15]. The black-box optimizations require time-
consuming measurements of each configuration within 
schedule space, which greatly increase the compilation time. 
Many studies for auto-tuning had proposed different methods 
for accelerating the compilation. In the framework of 
Chameleon [16, 17], two approaches were proposed to speed 
up the compilation. First, a model optimizer using simulated 
annealing is replaced with a reinforcement learning model, 
which learns the trend of the configuration cost and finds an 
optimal configuration. Second, a new sampling module was 
proposed to reduce similar configurations and predict an 
optimal configuration by combining frequently-seen knob 
entities. While the default tuner in AutoTVM uses XGBoost 
and a genetic algorithm, another research [18] applies Greedy 
Best-First-Search (G-BFS) and Neighborhood Actor 
Advantage Critic (N-A2C) to search an optimal configuration 
for matrix multiplications to gain a better performance. 

VII. CONCLUSION 
We proposed multiple optimizations for accelerating the 

DNN compilation. First, we proposed the adaptive early-stop, 
sampling and the history database, to reduce hardware 
measurements in local tuning. Second, we designed an online 
tuning service, which decoupled history-data-related works 
to server, and provided data sharing among multiple users and 
hyperparameter suggestion. Experimental results show that 
our approach greatly reduces hardware measurements for 
auto-tuning and effectively accelerates the model compilation. 
With the updated cost model and database organization, it has 
potential to gain ever better performance. 
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