

Faiza Khan1, Sultan Almari2,*, Muhammad Haseeb Khan3, and Summrina Kanwal4
1Riphah International University, Faculty of Computing, Islamabad 45211, Pakistan

2Department of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia
3Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan

4Center for Applied Intelligent Systems Research, Halmstad University, Sweden
Email: khanfaiza706@gmail.com(F.K.); salamri@seu.edu.sa (S.A.); summrina@gmail.com(S.K.)

*Corresponding author
Manuscript received January 10, 2023; revised January 25; accepted February 9, 2023; published June 21, 2024.

Abstract—Software testing is the most significant task in

software development and it takes maximum amount of time,
cost, and effort. Therefore, to decrease these resources SDP is
utilized to improve the work of the SQA process with the help of
predicting faulty or defective components. Numerous methods
have been proposed by researchers to predict defective
components but these methods generate partial results when
applied to imbalanced data sets. An imbalanced dataset has non-
uniform class distribution with very limited illustrations of a
precise class as compared to that of the other class. The usage of
imbalanced datasets leads to off-target predictions of the smaller
class, that are usually considered to be more significant than the
mainstream class. Thus, handling imbalanced data and HPO
efficiently is important for the successful development of a
capable bug prediction model. In this paper SDP model is
anticipated that utilizes different machine learning classifiers
with Tree-structured Parzen Estimator Method (TPE) as
hyperparameter optimizer to enhance defect prediction
accuracy through HPO and SMOTE algorithm to solve class
imbalance issue. The proposed method was evaluated on
eighteen software defect datasets from the promise repository.
Experimental results demonstrated that the proposed technique
achieved improved accuracy than when the classifiers are used
with default parameters.

Keywords—Software bug prediction (SDP), Tree-structured

Parzen Estimator Method (TPE), Synthetic Minority Over-
sampling Technique (SMOTE), Hyperparameter optimization
(HPO)

I. INTRODUCTION
Software Defect Prediction (SDP) helps in detecting

possible upcoming faults. Effective defect prediction helps in
finding the parts in software that had caused the flaws in
software and helps in decreasing maintenance costs and the
resources required. As with time, the complexity of software
is increasing, defect prediction (DP) timely, and Software
Quality Assurance (SQA) of projects is becoming a tough
task. To solve this issue in SDP, different machine learning
(ML) methods have been utilized by researchers. But still,
most of the software defect data is imbalanced and also
mostly ML classifiers use their default setting. These issues
of SDP have gained a lot of interest from researchers in the
Software Engineering (SE) community. Imbalanced Data
means that the amount of faulty class (minority class) is fewer
than the non-faulty class (majority class). This imbalanced
data misleads classifiers while learning the faulty class
appropriately and later the results obtained are unfair and
imprecise. A better DP model is trained on the same number
of occurrences of faulty and non-faulty classes [1].
Hyperparameters (HP) are parameters that are optimized for

ML classifiers to enhance their performance. Hyperparameter
optimization (HPO) or HP tuning is the method of optimizing
the HP of ML models or the method of finding the finest HP
values. Every classifier has diverse features that need to be
optimized [2]. It has been assessed by Fu, Menzies et al. [3]
that 80% of the utmost cited SDP studies depend on the
defaulting parameters. The default parameter configurations
greatly affect the performance of DP models due to which
they underperform.

The main inspiration behind our anticipated algorithm for
HP and class imbalance is from Malhotra and Jain [1], Shen,
Cai et al. [4], Khan, Kanwal et al. [2], Tantithamthavorn,
McIntosh et al. [5], and Kanwar, Awasthi et al. [6]. Malhotra
and Jain [1] used six oversampling methods and four
undersampling techniques on different datasets to resolve the
class imbalance issue. Shen, Cai et al. [4] utilized a Bayesian
optimization algorithm to optimize the HP of the random
forest model. Khan, Kanwal et al. [2] used Artificial Immune
Network (AIN) to optimize the HP of seven ML classifiers.
Tantithamthavorn, McIntosh et al. [5] examined caret
automated parameter optimization, grid search (GS), random
search (RS), genetic algorithm (GA), and differential
evolution (DE) on 20 ML classifiers to optimize defect
prediction models. Kanwar, Awasthi et al. [6] utilized a
Bayesian optimization algorithm to optimize the HP of the
LightGBM algorithm and borderline-SMOTE technique to
solve the class imbalance issue. Feng, Keung et al. [7]
investigated the stability of SMOTE-based oversampling
methods to improve the firmness of SMOTE-based
oversampling methods in SDP. Furthermore, it is stated that
when algorithms like GA, RS, GS, and DE are utilized for
HPO problems it maximizes computational costs and causes
over-fitting. However, in these studies, they did not study the
class imbalance issue and HPO of the classifier together
instead they only focus on HPO or class imbalance problem.
We intended to overcome these difficulties by experimenting
with SMOTE to tackle class imbalance issues and Tree-
structured Parzen Estimator Method (TPE) for HPO and we
have used the defect prediction dataset.

The contributions made in this paper are to tackle the class
imbalance issue using SMOTE on the SDP dataset and to
examine the effect of HPO of ML classifiers using TPE on
SDP using accuracy as performance measure.

The structure of the paper is organized as follows. Section
II explains related work, Section III delivers the background
information about the methods utilized in this paper. The
anticipated technique is described in Section IV. The results

International Journal of Machine Learning, Vol. 14, No. 2, 2024

59doi: 10.18178/ijml.2024.14.2.1159

of our experimental study are described in Section V and the
conclusion and upcoming work are shown in Section VIII.

II. LITERATURE REVIEW
Numerous studies have anticipated using ML methods for

SDP. In maximum studies, the HP of these ML classifiers are
left to their defaulting values. Nevertheless, in very limited
studies the outcome of HPO on defect prediction has been
inspected. Malhotra and Jain [1] inspected six oversampling
and four undersampling approaches with 15 ML methods and
results were validated statistically utilizing the Friedman test
and Nemenyi post hoc analysis. They have reported that these
resampling methods significantly enhanced the performance
of ML methods. Khan, Kanwal et al. [2] investigated ML
classifiers with the Artificial Immune Network (AIN) for
HPO. They used seven machine learning classifiers and the
method was evaluated on a bug prediction dataset. They have
reported that the HPO of ML classifiers, using AIN for SDP
had performed better than classifiers when their HP are not
optimized. Shen, Cai et al. [4] investigated a Bayesian
optimization algorithm to optimize the HP of the random
forest model on the SDP dataset. They have stated that their
proposed method outperformed. Tantithamthavorn, McIntosh
et al. [5] examined automatic parameter optimization on 20
ML methods using GS, RS, GA, and DE for defect prediction
models on SDP datasets from the National Aeronautics and
Space Administration (NASA) repository. They have
reported that automatic parameter optimization enhances
accuracy by up to 40%. Kanwar, Awasthi et al. [6] used a
Bayesian optimization algorithm to optimize the HP of the
LightGBM algorithm and borderline-SMOTE technique to
solve the class imbalance issue. And they have further
compared their proposed model with XGBoost and random
forest (RF) algorithm. They have reported that their proposed
model had achieved an accuracy of 99.12%. Feng, Keung et
al. [7] investigated the stability of SMOTE-based
oversampling methods to improve the firmness of SMOTE-
based oversampling methods in SDP. They have reported that
the performance of stable SMOTE-based oversampling
methods is improved than SMOTE-based oversampling
methods. Balogun, Lafenwa-Balogun et al. [8] used SMOTE
and homogeneous ensemble (Bagging and Boosting)
methods for SDP. They have used Decision Tree (DT) and
Bayesian Network (BN) as base classifiers. They have
reported that their proposed method outperformed other
methods. They have achieved an accuracy of 86.8%.
Bahaweres, Agustian et al. [9] investigated a combination of
Neural Network (NN) and SMOTE in which the HP of
SMOTE and NN are optimized utilizing RS to tackle the class
imbalance issues in six NASA datasets. They have reported
that Bal increases by 25.48% and Recall by 45.99% compared
to the original NN. They have also compared their proposed
method performance with Traditional ML-based SMOTE.
Xie, Xie et al. [10] used SMOTE to create a balanced sample
dataset and oversample the defective components in the
unbalanced sample dataset. They have also proposed a
method that uses regression after classification, and the
proposed method is applied to support vector machines (SVM)
to classify components. The experiment was evaluated on
open-source datasets. They have stated that the accuracy
anticipated method is improved than the prediction by

regression alone.
Based on the findings from literature review of the SDP

problem it is specified that in maximum defect prediction
studies, HP values are not optimized in ML classifiers due to
which these classifiers did not perform well. It was evident
from the literature that 80% of the SDP studies depend on
defaulting HP values and also HPO was not discovered in the
imbalance problem of SDP. In divergence, our study
objectives are to combine SMOTE and several ML classifiers
with HPO using TPE. We have also inspected the impact of
HPO on classifiers by comparing the prediction accuracy of
these classifiers before and after HPO and also before and
after class imbalance problems.

III. BACKGROUND
Here we have deliberated the methods, TPE, ML classifiers,

and HP in detail that are utilized in this paper.

A. Synthetic Minority Oversampling Technique (SMOTE)
SMOTE was first presented by Chawla, Bowyer et al [11]

which is an oversampling technique that is utilized to solve
the issue of class imbalance. To resolve the class imbalance
problem, SMOTE technique usually enhances the quantity of
data to the minority class with synthetic data. Synthetic data
was attained from k-NN (k-nearest neighbor). It has 2
parameters that are tuned such as ratio, and the number of
neighbors. The ratio parameter is the amount of major and
minor classes whereas the number of neighbors is the amount
of nearby neighbors to generate syntactic data. Synthetic data
can be produced through different processes such as on
numerical and category scales. For numerical data calculation,
Euclidian distance is used; while for categorical data
calculation mode values are used [9, 12]. The algorithm starts
by selecting KNNs then synthetic data is created by taking the
variance among the feature vector of the example under
deliberation and its nearest neighbor. Then it increases the
variance by a random figure among 0 and 1 and enhances it
to the feature vector under contemplation. So, a random point
is carefully chosen with the line segment among two precise
features. Therefore, SMOTE widens the data region of the
alternative class instances and forces the result area of the
class to develop more generally. The flowchart of SMOTE is
described in Fig. 1 below:

Fig. 1. Flow Chart of SMOTE Algorithm.

B. Machine learning (ML) classifiers
In this study, we have utilized five ML classifiers such as

International Journal of Machine Learning, Vol. 14, No. 2, 2024

60

KNN, SVM, NB, RF, and XGBoost.
KNN is a classification-based ML classifier that classifies

an instance to the adjacent class based on its maximum
number of neighbors. The KNN stores all the accessible data
and categorizes an innovative data point founded on the
resemblance measure e.g., distance functions. This means
that when new data appears it can be simply classified into a
well-suited group by KNN [2]. In this we have utilized three
distance metrics namely Euclidean, Manhattan, and
Minkowski metrics for KNN. SVM is a geometrically-
inspired ML classifier that utilizes a hyperplane to distinguish
two classes by selecting the finest by separating hyper-plane
to categorize data linearly. It is trained to create a model and
after the model is evaluated. If the example data is not
separated linearly then approximately additional approaches
are castoff. In this paper RBF, Polynomial, Sigmoid, and
Linear kernel methods are used. NB is a probability-based
ML classifier based on Bayes Theorem. It works by defining
the connection between the probabilities of an incident that is
presently happening with the probability of an alternative
incident that has previously happened. RF is an ML classifier
that creates a forest with numerous trees. In RF, the amount
of trees is directly compared to the resultant accuracy; that is
if the amount of trees in the forest is bigger, the accuracy of
the results is also greater. When generating a forest of trees,
the RF initially constructs each tree separately via bagging
and feature randomness [13, 14]. XGBoost stands for
Extreme Gradient Boosting. It offers parallel tree boosting
and is an important ML library for regression, and
classification problems.

We have chosen these classifiers for SDP because they
operate differently and have many hyperparameters that need
to be optimized.

C. Tree-structured Parzen Estimator Approach (TPE)
The TPE optimization is mostly similar to Bayesian

optimization [15]. The TPE algorithm is accessible as a
sequential model-based optimization (SMBO) method that
will tackle the problem of HPO. The TPE method takes an
evaluation function f(θ) that alters the setting area into a non-
parametric Parzen-window density estimate. This setting area
is demonstrated by uniform distribution, discrete uniform
distribution, or logarithmic uniform distribution. Later, these
variations of settings will contribute to the TPE. For the
recursive method, the TPE approaches f(θ) in setting area.
The expected improvement (EI) standard is deployed to find
the finest HP θ∗ from the examination area. This algorithm
states that the probability distribution p(θ|y) by dividing the
setting area into good and bad HP instances as [14–16]:

�

where HPgood (θ)and HPbad (θ) are Parzen estimators utilized
to evaluate the compactness designed by utilizing the
observations θ if (θi) is fewer than or bigger than y ∗ ,
correspondingly. In this y < y∗ shows that the value of the f(θ)
is fewer than the threshold, and y > y∗ signifies that the value
of the f(θ) is higher than the threshold. The ideal HP value θ
is expressed as [16]:

�

The flow chart of the TPE approach is shown in Fig. 2
below [16]:

Fig 2: Flow chart of the TPE [16].

D. Software Defect Prediction (SDP) Dataset:
The dataset utilized in this model is an object-oriented (OO)

class-level open-source dataset. This dataset is taken from the
PROMISE repository of empirical SE data
(http://promisedata.googlecode.com). It is containing 20 OO
metrics as independent features and defects of class as the
dependent variable. The feature information or metrics
utilized in this dataset is provided in Table 1 below [17]:

Table 1. The arrangement of Channels
S.No Attributes Explanation
1 WMC Weighted methods per class
2 DIT Depth of Inheritance Tree
3 NOC Number of Children
4 CBO Coupling between object classes
5 RFC Response for a Class
6 LCOM Lack of cohesion in methods
7 LCOM3 Lack of cohesion in methods
8 NPM Number of Public Methods
9 DAM Data Access Metric
10 MOA Measure of Aggregation
11 MFA Measure of Functional Abstraction
12 CAM Cohesion Among Methods of Class
13 IC Inheritance Coupling
14 CBM Coupling Between Methods
15 AMC Average Method Complexity
16 Ca Afferent couplings
17 Ce Efferent couplings
18 CC Cyclomatic complexity
19 Max(CC) The greatest value of CC
20 Avg(CC) The arithmetic mean of the CC

E. Hyperparameter optimization (HPO):
HP are constraints that are adjusted for ML classifiers to

increase their classification accuracy. These constraints
typically disturb the learning, construction, and assessment of
ML classifiers. HPO is the procedure of finding the finest HP
of ML classifiers and is also recognized as HP tuning [2, 18].
The HP of the considered classification methods that are
adjusted are given in Table 2 below. To adjust the HP of these
classifiers, TPE was utilized. Details of the HP for these
classifiers using TPE are shown in Table 2 below:

International Journal of Machine Learning, Vol. 14, No. 2, 2024

61

Table 2. HP of the ML CLASSIFIERS that are optimized
ML

Classifiers
Hyperparameter

s name
Default
value

Optimized
parameters value

range
KNN n_neighbors 5 5,7,9,11,13,15

Weights Uniform Uniform, distance

Metric Minkows
ki

Minkowski, Euclidean,
manhattan

SVM C 1.0 0.1,1,100,1000

Gamma 1 1, 0.1, 0.01, 0.001,
0.0001

Kernel RBF rbf, poly, sigmoid,
linear

Degree 3 1,2,3,4,5,6

NB var_smoothing 1e-9 1e-9, 1e-6, 1e-12
RF n_estimators 100 100, 200, 300,

400,500,600
max_depth None 1, 15,50
Criterion Gini gini, entropy

Xgboost max_depth 6 3, 18, 1
Gamma 0 1,9

reg_alpha 0 40, 180, 1

reg_lambda 1 0, 1
colsample_bytree 1 0.5, 1

min_child_weigh
t

1 0, 10, 1

n_estimators 100 180

Seed 0 0

F. Performance Metrics:
The proposed model was assessed by using the following

performance metric.
Accuracy: It is the number of correct guesses made as a

ratio to all guesses made. The formula for accuracy is given
below:

�

IV. PROPOSED SMOTE-TPE HPO APPROACH:
We have proposed a TPE algorithm for the HPO of ML

classifiers such as SVM, KNN, NB, RF, and XGBoost and
balanced our data with SMOTE algorithm. This optimization
method objective is to enhance the prediction accuracy of ML
classifiers. The process of the proposed methodology is
shown in Fig 3.

Fig. 3. Workflow of our proposed technique.

Our proposed methodology describes that the data
preprocessing was first carried out employing Data
Standardization in which the data was standardized to resize
the distribution of values in this the mean of the detected
values is 0 and the standard deviation is 1. We have used this
because it will help in increasing the classifier accuracy. The
expression for data standardization is shown below:

�

where x is the instance, μ is the mean and σ is the standard
deviation. After normalization, data was separated into 70%
training and 30% testing data. Later we applied SMOTE to
solve the class imbalance issue to the training and test data.
For the defective class synthetic instances are generated so
that it balances the non-defective class. The tools we used for
SMOTE are imblearn.over_sampling. When the data is
balanced using SMOTE then the training data was utilized to
train the ML classifiers and testing data was utilized to
compute the classification accuracy. When the classifier was
proficient with training data utilizing 10-fold cross-validation,
then testing was performed on the testing data and the
outcomes were assessed utilizing classification accuracy. To
increase the classification accuracy HPO was used, and, for
this reason, the TPE optimization algorithms were used. For
HPO we have used Tpe.suggest which executes a Bayesian-
based reiterative search. The search strategy of TPE
comprises two phases. During the first phase, it randomly
identifies an HP value. These HP values are chosen by
activation functions. The selected HP value combinations are
utilized to train a model, which is assessed with the test data
to check that the selected HP value can influence the accuracy.
The second stage continues for n_init iterations which are 20
in our tests and constructs a function founded on the Bayesian
rule that is shown below:

�

where P(accuracy|parameter) is the probability of
classification accuracy (accuracy) that is attained with a set
of HP values (parameter). Grounded on this classification
accuracy, HP values are scattered into good and bad parts. In
our experiment, parameter γ = 0.25 is used which means that
25% of all HP value combinations fit in good part, while the
rest (75%) fit in bad part, also γ permits us to fix the scope of
a good part. Founded on how HP values are scattered, the
accuracy threshold (accuracy’) is considered. Thus,
P(accuracy|parameter) is anticipated to give an enhancement
only if accuracy ≥ acc’. P(parameter|accuracy) is shown
below:

�

The aim of the second phase of TPE is that the expected
improvement (EI) ratio is maximized formula for this is given
below:

�

International Journal of Machine Learning, Vol. 14, No. 2, 2024

62

The EI is maximized by selecting the HP values (parameter)
with higher probability Pgood(parameter) and lower
probability Pbad(parameter). It is completed by gathering
N_EI HP values (n_EI = 24) and selecting the finest one with
the highest EI enhancement. Then, the highest EI
enhancement is learned and utilized in the succeeding
repetition. In the upcoming repetition, TPE computes the
classification accuracy and allocates the HP values into good
and bad parts, but during this period, it utilizes all prior HP
values organized with the new one. This procedure is
recurring till the resolute number of trials (n_trials = 50) is
touched. The default TPE parameters that are utilized in our
experiment are n_init = 20, γ = 0.25, n_EI = 24, and n_trials
set to 50.

V. RESULTS AND DISCUSSION

Table 3. Results of ML classifiers in accuracy and F1-score before HPO
Dataset KNN SVM RF NB XgBoost

ant-1.7 0.76 0.72 0.79 0.66 0.80
Camel-1.0 0.76 0.76 0.78 0.66 0.79
Camel-1.6 0.76 0.78 0.80 0.57 0.77
Data_arc 0.81 0.70 0.79 0.76 0.63

Data_ivy-2.0 0.83 0.85 0.85 0.71 0.87
Data_prop-6 0.85 0.72 0.88 0.58 0.89

Data_redaktor 0.84 0.79 0.86 0.57 0.81
Jedit-3.2 0.83 0.80 0.85 0.73 0.64
Jedit-4.2 0.87 0.75 0.88 0.67 0.83
Log4j-1.1 0.82 0.78 0.79 0.73 0.64

Lucene-2.0 0.71 0.65 0.68 0.67 0.50
Poi-2.0 0.85 0.88 0.90 0.54 0.86

Synapse-1.0 0.84 0.91 0.87 0.75 0.85
Synapse-1.2 0.75 0.79 0.83 0.73 0.63
Velocity-1.6 0.78 0.75 0.80 0.57 0.61

Xalan-2.4 0.83 0.91 0.90 0.61 0.81
Xerces-1.2 0.81 0.83 0.81 0.55 0.81
Xerces-1.3 0.83 0.81 0.87 0.74 0.81

Table 4. Results of ML classifiers in accuracy and F1-score after HPO
Dataset KNN SVM RF NB XgBoost

ant-1.7 0.86 0.76 0.88 0.70 0.81
Camel-1.0 0.92 0.90 0.97 0.91 0.96

Camel-1.6 0.76 0.86 0.87 0.60 0.80
Data_arc 0.82 0.72 0.89 0.86 0.64

Data_ivy-2.0 0.87 0.94 0.93 0.72 0.88
Data_prop-6 0.88 0.74 0.91 0.60 0.90

Data_redaktor 0.87 0.90 0.93 0.59 0.84
Jedit-3.2 0.85 0.84 0.87 0.75 0.67
Jedit-4.2 0.91 0.82 0.92 0.70 0.86
Log4j-1.1 0.86 0.80 0.82 0.78 0.66

Lucene-2.0 0.73 0.69 0.71 0.70 0.52
Poi-2.0 0.87 0.91 0.93 0.56 0.88

Synapse-1.0 0.87 0.93 0.90 0.76 0.89
Synapse-1.2 0.79 0.81 0.85 0.70 0.66
Velocity-1.6 0.81 0.78 0.82 0.60 0.65

Xalan-2.4 0.86 0.92 0.91 0.64 0.84
Xerces-1.2 0.83 0.88 0.89 0.60 0.84
Xerces-1.3 0.87 0.84 0.91 0.77 0.84

This segment provides the results of the HPO of ML
classifiers utilizing TPE for SDP to increase its prediction
accuracy. We conducted our experiment with an SDP dataset
to categorize the information as defective or nondefective.
The result was assessed utilizing classification accuracy.
Below Tables 3, and 4 describes the accuracy of SDP using
ML classifiers such as SVM, KNN, NB, RF, and XGBoost
before and after HPO. This procedure continues to evaluate

according to their association with the accuracy. As expected,
the method anticipated by us produced acceptable results for
all eighteen datasets. From Table 4 it is evident that for HPO
the prediction accuracy of ML classifiers is significantly
enhanced for nearly all the datasets. To calculate the variance
in the accuracy of every ML classifier, we compared the
accuracy of the ML classifiers utilizing default values and
HPO values shown in Tables 3, and 4. Overall, accuracy is
improved by the HPO of ML classifiers using TPE rather than
using defaulting parameter values. In summary, we can see
XGBoost based TPE contains highest accuracy of 96% on
Camel-1.0 dataset. this shows that XGBoost based TPE can
outperform in terms of performance from other algorithms.

VI. CONCLUSION AND FUTURE WORK

This paper anticipated SMOTE algorithm to enhance ML
classifiers performance on class imbalance issue of SDP.
Separately HP values of all ML classifiers are adjusted using
a TPE to find the finest combination of HP. Best HP values
are utilized for assessment. The dataset utilized is 18 promise
repository datasets. On the basis of results XGBoost
performance was increased significantly (accuracy by 96%)
and all ML classifiers outperformed compared to the original
ML classifiers without SMOTE and TPE HPO. Yet, each
dataset has a diverse winning HPO values, obtained accuracy
and the differences are not significant. For further research,
Bayesian optimization and evolutionary algorithms can be
utilized to evade unfairness in the results of HPO on SDP.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS
The experiments were conceived and planned by Faiza

Khan, Sultan Almari, Muhammad Haseeb Khan, and
Summrina Kanwal. Faiza Khan and Muhammad Haseeb
Khan executed the experiments. Summrina Kanwal, Faiza
Khan, and Muhammad Haseeb Khan were involved in both
planning and conducting the simulations. Sultan Almari,
Faiza Khan, and Summrina Kanwal contributed to sample
preparation and the interpretation of the results. Faiza Khan
took the primary responsibility for writing the manuscript. All
authors played a crucial role in providing valuable feedback
and contributing to the research, analysis, and manuscript
formation.

REFERENCES
[1] R. Malhotra and J. Jain, “Predicting defects in imbalanced data using

resampling methods: An empirical investigation,” PeerJ Computer
Science, vol. 8, e573, 2022.

[2] F. Khan, S. Kanwal, S. Alamri, and B. Mumtaz, “Hyper-parameter
optimization of classifiers, using an artificial immune network and its
application to software bug prediction,” IEEE Access, vol. 8, pp.
20954-20964, 2020.

[3] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is it
really necessary?” Information and Software Technology, vol. 76, pp.
135-146, 2016.

[4] Y. Shen, S. Hu, S. Cai, and M. Chen, “Software defect prediction based
on Bayesian optimization random forest,” in Proc. 2022 9th
International Conference on Dependable Systems and Their
Applications (DSA), IEEE, August 2022, pp. 1012-1013.

[5] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto,
2018, “The impact of automated parameter optimization on defect

International Journal of Machine Learning, Vol. 14, No. 2, 2024

63

prediction models,” IEEE Transactions on Software Engineering, vol.
45, no. 7, pp. 683-711.

[6] S. Kanwar, L. K. Awasthi, and V. Shrivastava, “Cross-Project Defect
Prediction by Using Optimized Light Gradient Boosting Machine
Algorithm,” Communication and Intelligent Systems, Springer,
Singapore pp. 933-946, 2022.

[7] S. Feng, J. Keung, X. Yu, Y. Xiao, and M. Zhang, “Investigation on
the stability of SMOTE-based oversampling techniques in software
defect prediction,” Information and Software Technology, vol. 139, p.
106662, 2021.

[8] A. O. Balogun, F. B. Lafenwa-Balogun et al., “SMOTE-based
homogeneous ensemble methods for software defect prediction,” in
Proc. International Conference on Computational Science and its
Applications, July 2020, pp. 615-631, Springer, Cham.

[9] R. B. Bahaweres, F. Agustian, I. Hermadi, A. I. Suroso, and Y.
Arkeman, “Software defect prediction using neural network based
SMOTE,” in Proc. 2020 7th International Conference on Electrical
Engineering, Computer Sciences and Informatics (EECSI), October
2020, pp. 71-76, IEEE.

[10] G. Xie, S. Xie, X. Peng, and Z. Li, “Prediction of Number of Software
Defects based on SMOTE,” International Journal of Performability
Engineering, vol. 17, no. 1, 2021.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, 2002.

[12] C. Pak, T. T. Wang, and X. H. Su, 2018, “An empirical study on
software defect prediction using over-sampling by SMOTE,”
International Journal of Software Engineering and Knowledge
Engineering, vol. 28(06), 811-830.

[13] B. Mumtaz, S. Kanwal, S. Alamri, and F. Khan, “Feature selection
using artificial immune network: An approach for software defect
prediction,” Intelligent Automation & Soft Computing, vol. 29, no. 3,
2021.

[14] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” Advances in Neural Information
Processing Systems, vol. 24, 2011.

[15] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search:
Hyperparameter optimization in hundreds of dimensions for vision
architectures,” in Proc. International conference on machine learning,
February 2013, pp. 115-123, PMLR.

[16] M. Massaoudi, H. Abu-Rub, S. S. Refaat, M. Trabelsi, I. Chihi, and
F. S. Oueslati, 2021, “Enhanced deep belief network based on ensemble
learning and tree-structured of parzen estimators,” An Optimal
Photovoltaic Power Forecasting Method, vol. 9, pp. 150330-150344.

[17] D. Aggarwal, “Software defect prediction dataset,” Figshare, Dataset,
2021. https://doi.org/10.6084/m9.figshare.13536506.v1

[18] S. Kanwal, A. Hussain, and K. Huang, “Novel Artificial Immune
Networks-based optimization of shallow machine learning (ML)
classifiers,” Expert Systems with Applications, vol. 165, pp. 113834,
2021.

Copyright © 2024 by the authors. This is an open access article distributed
under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original
work is properly cited (CC BY 4.0).

International Journal of Machine Learning, Vol. 14, No. 2, 2024

64

	2024.1.16-ICKEA2023-C2-413-IJML-周阳

