
  

Faiza Khan1, Sultan Almari2,*, Muhammad Haseeb Khan3, and Summrina Kanwal4 
1Riphah International University, Faculty of Computing, Islamabad 45211, Pakistan 

2Department of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia 
3Pak-Austria Fachhochschule Institute of Applied Sciences and Technology, Haripur, Pakistan 

4Center for Applied Intelligent Systems Research, Halmstad University, Sweden 
Email: khanfaiza706@gmail.com(F.K.); salamri@seu.edu.sa (S.A.); summrina@gmail.com(S.K.) 

*Corresponding author 
Manuscript received January 10, 2023; revised January 25; accepted February 9, 2023; published June 21, 2024. 

 
Abstract—Software testing is the most significant task in 

software development and it takes maximum amount of time, 
cost, and effort. Therefore, to decrease these resources SDP is 
utilized to improve the work of the SQA process with the help of 
predicting faulty or defective components. Numerous methods 
have been proposed by researchers to predict defective 
components but these methods generate partial results when 
applied to imbalanced data sets. An imbalanced dataset has non-
uniform class distribution with very limited illustrations of a 
precise class as compared to that of the other class. The usage of 
imbalanced datasets leads to off-target predictions of the smaller 
class, that are usually considered to be more significant than the 
mainstream class. Thus, handling imbalanced data and  HPO 
efficiently is important for the successful development of a 
capable bug prediction model. In this paper SDP model is 
anticipated that utilizes different machine learning classifiers 
with Tree-structured Parzen Estimator Method (TPE) as 
hyperparameter optimizer to enhance defect prediction 
accuracy through HPO and SMOTE algorithm to solve class 
imbalance issue. The proposed method was evaluated on 
eighteen software defect datasets from the promise repository. 
Experimental results demonstrated that the proposed technique 
achieved improved accuracy than when the classifiers are used 
with default parameters. 
 
Keywords—Software bug prediction (SDP), Tree-structured 

Parzen Estimator Method (TPE), Synthetic Minority Over-
sampling Technique (SMOTE), Hyperparameter optimization 
(HPO) 

I. INTRODUCTION 
Software Defect Prediction (SDP) helps in detecting 

possible upcoming faults. Effective defect prediction helps in 
finding the parts in software that had caused the flaws in 
software and helps in decreasing maintenance costs and the 
resources required.  As with time, the complexity of software 
is increasing, defect prediction (DP) timely, and Software 
Quality Assurance (SQA) of projects is becoming a tough 
task. To solve this issue in SDP, different machine learning 
(ML) methods have been utilized by researchers. But still, 
most of the software defect data is imbalanced and also 
mostly ML classifiers use their default setting. These issues 
of SDP have gained a lot of interest from researchers in the 
Software Engineering (SE) community. Imbalanced Data 
means that the amount of faulty class (minority class) is fewer 
than the non-faulty class (majority class). This imbalanced 
data misleads classifiers while learning the faulty class 
appropriately and later the results obtained are unfair and 
imprecise. A better DP model is trained on the same number 
of occurrences of faulty and non-faulty classes [1].  
Hyperparameters (HP) are parameters that are optimized for 

ML classifiers to enhance their performance. Hyperparameter 
optimization (HPO) or HP tuning is the method of optimizing 
the HP of ML models or the method of finding the finest HP 
values. Every classifier has diverse features that need to be 
optimized [2]. It has been assessed by Fu, Menzies et al. [3] 
that 80% of the utmost cited SDP studies depend on the 
defaulting parameters. The default parameter configurations 
greatly affect the performance of DP models due to which 
they underperform. 

The main inspiration behind our anticipated algorithm for 
HP and class imbalance is from Malhotra and Jain [1], Shen, 
Cai et al. [4], Khan, Kanwal et al. [2], Tantithamthavorn, 
McIntosh et al. [5], and Kanwar, Awasthi et al. [6]. Malhotra 
and Jain [1] used six oversampling methods and four 
undersampling techniques on different datasets to resolve the 
class imbalance issue. Shen, Cai et al. [4] utilized a Bayesian 
optimization algorithm to optimize the HP of the random 
forest model. Khan, Kanwal et al. [2] used Artificial Immune 
Network (AIN) to optimize the HP of seven ML classifiers. 
Tantithamthavorn, McIntosh et al. [5] examined caret 
automated parameter optimization, grid search (GS), random 
search (RS), genetic algorithm (GA), and differential 
evolution (DE) on 20 ML classifiers to optimize defect 
prediction models. Kanwar, Awasthi et al. [6] utilized a 
Bayesian optimization algorithm to optimize the HP of the 
LightGBM algorithm and borderline-SMOTE technique to 
solve the class imbalance issue. Feng, Keung et al. [7] 
investigated the stability of SMOTE-based oversampling 
methods to improve the firmness of SMOTE-based 
oversampling methods in SDP. Furthermore, it is stated that 
when algorithms like GA, RS, GS, and DE are utilized for 
HPO problems it maximizes computational costs and causes 
over-fitting. However, in these studies, they did not study the 
class imbalance issue and HPO of the classifier together 
instead they only focus on HPO or class imbalance problem. 
We intended to overcome these difficulties by experimenting 
with SMOTE to tackle class imbalance issues and Tree-
structured Parzen Estimator Method (TPE) for HPO and we 
have used the defect prediction dataset. 

The contributions made in this paper are to tackle the class 
imbalance issue using SMOTE on the SDP dataset and to 
examine the effect of HPO of ML classifiers using TPE on 
SDP using accuracy as performance measure. 

The structure of the paper is organized as follows. Section 
II explains related work, Section III delivers the background 
information about the methods utilized in this paper. The 
anticipated technique is described in Section IV. The results 
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of our experimental study are described in Section V and the 
conclusion and upcoming work are shown in Section VIII. 

II. LITERATURE REVIEW  
Numerous studies have anticipated using ML methods for 

SDP. In maximum studies, the HP of these ML classifiers are 
left to their defaulting values. Nevertheless, in very limited 
studies the outcome of HPO on defect prediction has been 
inspected. Malhotra and Jain [1] inspected six oversampling 
and four undersampling approaches with 15 ML methods and 
results were validated statistically utilizing the Friedman test 
and Nemenyi post hoc analysis. They have reported that these 
resampling methods significantly enhanced the performance 
of ML methods. Khan, Kanwal et al. [2] investigated ML 
classifiers with the Artificial Immune Network (AIN) for 
HPO. They used seven machine learning classifiers and the 
method was evaluated on a bug prediction dataset. They have 
reported that the HPO of ML classifiers, using AIN for SDP 
had performed better than classifiers when their HP are not 
optimized. Shen, Cai et al. [4] investigated a Bayesian 
optimization algorithm to optimize the HP of the random 
forest model on the SDP dataset. They have stated that their 
proposed method outperformed. Tantithamthavorn, McIntosh 
et al. [5] examined automatic parameter optimization on 20 
ML methods using GS, RS, GA, and DE for defect prediction 
models on SDP datasets from the National Aeronautics and 
Space Administration (NASA) repository. They have 
reported that automatic parameter optimization enhances 
accuracy by up to 40%. Kanwar, Awasthi et al. [6] used a 
Bayesian optimization algorithm to optimize the HP of the 
LightGBM algorithm and borderline-SMOTE technique to 
solve the class imbalance issue. And they have further 
compared their proposed model with XGBoost and random 
forest (RF) algorithm. They have reported that their proposed 
model had achieved an accuracy of 99.12%. Feng, Keung et 
al. [7] investigated the stability of SMOTE-based 
oversampling methods to improve the firmness of SMOTE-
based oversampling methods in SDP. They have reported that 
the performance of stable SMOTE-based oversampling 
methods is improved than SMOTE-based oversampling 
methods. Balogun, Lafenwa-Balogun et al. [8] used SMOTE 
and homogeneous ensemble (Bagging and Boosting) 
methods for SDP. They have used Decision Tree (DT) and 
Bayesian Network (BN) as base classifiers. They have 
reported that their proposed method outperformed other 
methods. They have achieved an accuracy of 86.8%. 
Bahaweres, Agustian et al. [9] investigated a combination of 
Neural Network (NN) and SMOTE in which the HP of 
SMOTE and NN are optimized utilizing RS to tackle the class 
imbalance issues in six NASA datasets. They have reported 
that Bal increases by 25.48% and Recall by 45.99% compared 
to the original NN. They have also compared their proposed 
method performance with Traditional ML-based SMOTE. 
Xie, Xie et al. [10] used SMOTE to create a balanced sample 
dataset and oversample the defective components in the 
unbalanced sample dataset. They have also proposed a 
method that uses regression after classification, and the 
proposed method is applied to support vector machines (SVM) 
to classify components. The experiment was evaluated on 
open-source datasets. They have stated that the accuracy 
anticipated method is improved than the prediction by 

regression alone. 
Based on the findings from literature review of the SDP 

problem it is specified that in maximum defect prediction 
studies, HP values are not optimized in ML classifiers due to 
which these classifiers did not perform well. It was evident 
from the literature that 80% of the SDP studies depend on 
defaulting HP values and also HPO was not discovered in the 
imbalance problem of SDP. In divergence, our study 
objectives are to combine SMOTE and several ML classifiers 
with HPO using TPE. We have also inspected the impact of 
HPO on classifiers by comparing the prediction accuracy of 
these classifiers before and after HPO and also before and 
after class imbalance problems. 

III. BACKGROUND 
Here we have deliberated the methods, TPE, ML classifiers, 

and HP in detail that are utilized in this paper. 

A. Synthetic Minority Oversampling Technique (SMOTE) 
SMOTE was first presented by Chawla, Bowyer et al [11] 

which is an oversampling technique that is utilized to solve 
the issue of class imbalance. To resolve the class imbalance 
problem, SMOTE technique usually enhances the quantity of 
data to the minority class with synthetic data. Synthetic data 
was attained from k-NN (k-nearest neighbor). It has 2 
parameters that are tuned such as ratio, and the number of 
neighbors. The ratio parameter is the amount of major and 
minor classes whereas the number of neighbors is the amount 
of nearby neighbors to generate syntactic data. Synthetic data 
can be produced through different processes such as on 
numerical and category scales. For numerical data calculation, 
Euclidian distance is used; while for categorical data 
calculation mode values are used [9, 12]. The algorithm starts 
by selecting KNNs then synthetic data is created by taking the 
variance among the feature vector of the example under 
deliberation and its nearest neighbor. Then it increases the 
variance by a random figure among 0 and 1 and enhances it 
to the feature vector under contemplation. So, a random point 
is carefully chosen with the line segment among two precise 
features. Therefore, SMOTE widens the data region of the 
alternative class instances and forces the result area of the 
class to develop more generally. The flowchart of SMOTE is 
described in Fig. 1 below: 

 
Fig. 1. Flow Chart of SMOTE Algorithm. 

 

B. Machine learning (ML) classifiers 
In this study, we have utilized five ML classifiers such as 
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KNN, SVM, NB, RF, and XGBoost. 
KNN is a classification-based ML classifier that classifies 

an instance to the adjacent class based on its maximum 
number of neighbors. The KNN stores all the accessible data 
and categorizes an innovative data point founded on the 
resemblance measure e.g., distance functions. This means 
that when new data appears it can be simply classified into a 
well-suited group by KNN [2]. In this we have utilized three 
distance metrics namely Euclidean, Manhattan, and 
Minkowski metrics for KNN.  SVM is a geometrically-
inspired ML classifier that utilizes a hyperplane to distinguish 
two classes by selecting the finest by separating hyper-plane 
to categorize data linearly. It is trained to create a model and 
after the model is evaluated. If the example data is not 
separated linearly then approximately additional approaches 
are castoff. In this paper RBF, Polynomial, Sigmoid, and 
Linear kernel methods are used. NB is a probability-based 
ML classifier based on Bayes Theorem. It works by defining 
the connection between the probabilities of an incident that is 
presently happening with the probability of an alternative 
incident that has previously happened. RF is an ML classifier 
that creates a forest with numerous trees. In RF, the amount 
of trees is directly compared to the resultant accuracy; that is 
if the amount of trees in the forest is bigger, the accuracy of 
the results is also greater. When generating a forest of trees, 
the RF initially constructs each tree separately via bagging 
and feature randomness [13, 14]. XGBoost stands for 
Extreme Gradient Boosting. It offers parallel tree boosting 
and is an important ML library for regression, and 
classification problems.  

We have chosen these classifiers for SDP because they 
operate differently and have many hyperparameters that need 
to be optimized. 

C. Tree-structured Parzen Estimator Approach (TPE)
The TPE optimization is mostly similar to Bayesian

optimization [15]. The TPE algorithm is accessible as a 
sequential model-based optimization (SMBO) method that 
will tackle the problem of HPO. The TPE method takes an 
evaluation function f(θ) that alters the setting area into a non-
parametric Parzen-window density estimate. This setting area 
is demonstrated by uniform distribution, discrete uniform 
distribution, or logarithmic uniform distribution. Later, these 
variations of settings will contribute to the TPE. For the 
recursive method, the TPE approaches f(θ) in setting area. 
The expected improvement (EI) standard is deployed to find 
the finest HP θ∗ from the examination area. This algorithm 
states that the probability distribution p(θ|y) by dividing the 
setting area into good and bad HP instances as [14–16]: 

�

where HPgood (θ)and HPbad (θ) are Parzen estimators utilized 
to evaluate the compactness designed by utilizing the 
observations θ if (θi) is fewer than or bigger than y ∗ , 
correspondingly. In this y < y∗ shows that the value of the f(θ) 
is fewer than the threshold, and y > y∗ signifies that the value 
of the f(θ) is higher than the threshold. The ideal HP value θ 
is expressed as [16]: 

�

The flow chart of the TPE approach is shown in Fig. 2 
below [16]: 

Fig 2: Flow chart of the TPE [16]. 

D. Software Defect Prediction (SDP) Dataset:
The dataset utilized in this model is an object-oriented (OO)

class-level open-source dataset. This dataset is taken from the 
PROMISE repository of empirical SE data 
(http://promisedata.googlecode.com). It is containing 20 OO 
metrics as independent features and defects of class as the 
dependent variable. The feature information or metrics 
utilized in this dataset is provided in Table 1 below [17]: 

Table 1. The arrangement of Channels 
S.No Attributes Explanation 
1 WMC Weighted methods per class  
2 DIT Depth of Inheritance Tree 
3 NOC Number of Children 
4 CBO Coupling between object classes 
5 RFC Response for a Class 
6 LCOM Lack of cohesion in methods 
7 LCOM3 Lack of cohesion in methods 
8 NPM Number of Public Methods 
9 DAM Data Access Metric 
10 MOA Measure of Aggregation 
11 MFA Measure of Functional Abstraction 
12 CAM Cohesion Among Methods of Class 
13 IC Inheritance Coupling 
14 CBM Coupling Between Methods 
15 AMC Average Method Complexity 
16 Ca Afferent couplings 
17 Ce Efferent couplings 
18 CC Cyclomatic complexity 
19 Max(CC) The greatest value of CC 
20 Avg(CC) The arithmetic mean of the CC 

E. Hyperparameter optimization (HPO):
HP are constraints that are adjusted for ML classifiers to

increase their classification accuracy. These constraints 
typically disturb the learning, construction, and assessment of 
ML classifiers. HPO is the procedure of finding the finest HP 
of ML classifiers and is also recognized as HP tuning [2, 18]. 
The HP of the considered classification methods that are 
adjusted are given in Table 2 below. To adjust the HP of these 
classifiers, TPE was utilized. Details of the HP for these 
classifiers using TPE are shown in Table 2 below: 
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Table 2. HP of the ML CLASSIFIERS that are optimized 
ML 

Classifiers 
Hyperparameter

s name 
Default 
value 

Optimized 
parameters value 

range 
KNN n_neighbors 5 5,7,9,11,13,15 

Weights Uniform Uniform, distance 

Metric Minkows
ki 

Minkowski, Euclidean, 
manhattan 

SVM C 1.0 0.1,1,100,1000 

Gamma 1 1, 0.1, 0.01, 0.001, 
0.0001 

Kernel RBF rbf, poly, sigmoid, 
linear 

Degree 3 1,2,3,4,5,6 

NB var_smoothing 1e-9 1e-9, 1e-6, 1e-12 
RF n_estimators 100 100, 200, 300, 

400,500,600 
max_depth None 1, 15,50 
Criterion Gini gini, entropy 

Xgboost max_depth 6 3, 18, 1 
Gamma 0 1,9 

reg_alpha 0 40, 180, 1 

reg_lambda 1 0, 1 
colsample_bytree 1 0.5, 1 

min_child_weigh
t 

1 0, 10, 1 

n_estimators 100 180 

Seed 0 0 
 

F. Performance Metrics: 
The proposed model was assessed by using the following 

performance metric. 
Accuracy: It is the number of correct guesses made as a 

ratio to all guesses made. The formula for accuracy is given 
below: 

�

IV. PROPOSED SMOTE-TPE HPO APPROACH: 
We have proposed a TPE algorithm for the HPO of ML 

classifiers such as SVM, KNN, NB, RF, and XGBoost and 
balanced our data with SMOTE algorithm. This optimization 
method objective is to enhance the prediction accuracy of ML 
classifiers. The process of the proposed methodology is 
shown in Fig 3. 

 

 
Fig. 3. Workflow of our proposed technique. 

Our proposed methodology describes that the data 
preprocessing was first carried out employing Data 
Standardization in which the data was standardized to resize 
the distribution of values in this the mean of the detected 
values is 0 and the standard deviation is 1. We have used this 
because it will help in increasing the classifier accuracy. The 
expression for data standardization is shown below: 

�

where x is the instance, μ is the mean and σ is the standard 
deviation. After normalization, data was separated into 70% 
training and 30% testing data. Later we applied SMOTE to 
solve the class imbalance issue to the training and test data. 
For the defective class synthetic instances are generated so 
that it balances the non-defective class. The tools we used for 
SMOTE are imblearn.over_sampling. When the data is 
balanced using SMOTE then the training data was utilized to 
train the ML classifiers and testing data was utilized to 
compute the classification accuracy. When the classifier was 
proficient with training data utilizing 10-fold cross-validation, 
then testing was performed on the testing data and the 
outcomes were assessed utilizing classification accuracy. To 
increase the classification accuracy HPO was used, and, for 
this reason, the TPE optimization algorithms were used. For 
HPO we have used Tpe.suggest which executes a Bayesian-
based reiterative search. The search strategy of TPE 
comprises two phases. During the first phase, it randomly 
identifies an HP value. These HP values are chosen by 
activation functions. The selected HP value combinations are 
utilized to train a model, which is assessed with the test data 
to check that the selected HP value can influence the accuracy. 
The second stage continues for n_init iterations which are 20 
in our tests and constructs a function founded on the Bayesian 
rule that is shown below: 

�

where P(accuracy|parameter) is the probability of 
classification accuracy (accuracy) that is attained with a set 
of HP values (parameter). Grounded on this classification 
accuracy, HP values are scattered into good and bad parts. In 
our experiment, parameter γ = 0.25 is used which means that 
25% of all HP value combinations fit in good part, while the 
rest (75%) fit in bad part, also γ permits us to fix the scope of 
a good part. Founded on how HP values are scattered, the 
accuracy threshold (accuracy’) is considered. Thus, 
P(accuracy|parameter) is anticipated to give an enhancement 
only if accuracy ≥  acc’. P(parameter|accuracy) is shown 
below: 

�

The aim of the second phase of TPE is that the expected 
improvement (EI) ratio is maximized formula for this is given 
below: 

�
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The EI is maximized by selecting the HP values (parameter) 
with higher probability Pgood(parameter) and lower 
probability Pbad(parameter). It is completed by gathering 
N_EI HP values (n_EI = 24) and selecting the finest one with 
the highest EI enhancement. Then, the highest EI 
enhancement is learned and utilized in the succeeding 
repetition. In the upcoming repetition, TPE computes the 
classification accuracy and allocates the HP values into good 
and bad parts, but during this period, it utilizes all prior HP 
values organized with the new one. This procedure is 
recurring till the resolute number of trials (n_trials = 50) is 
touched. The default TPE parameters that are utilized in our 
experiment are n_init = 20, γ = 0.25, n_EI = 24, and n_trials 
set to 50. 

V. RESULTS AND DISCUSSION

Table 3. Results of ML classifiers in accuracy and F1-score before HPO 
Dataset KNN SVM RF NB XgBoost 

ant-1.7 0.76 0.72 0.79 0.66 0.80 
Camel-1.0 0.76 0.76 0.78 0.66 0.79 
Camel-1.6 0.76 0.78 0.80 0.57 0.77 
Data_arc 0.81 0.70 0.79 0.76 0.63 

Data_ivy-2.0 0.83 0.85 0.85 0.71 0.87 
Data_prop-6 0.85 0.72 0.88 0.58 0.89 

Data_redaktor 0.84 0.79 0.86 0.57 0.81 
Jedit-3.2 0.83 0.80 0.85 0.73 0.64 
Jedit-4.2 0.87 0.75 0.88 0.67 0.83 
Log4j-1.1 0.82 0.78 0.79 0.73 0.64 

Lucene-2.0 0.71 0.65 0.68 0.67 0.50 
Poi-2.0 0.85 0.88 0.90 0.54 0.86 

Synapse-1.0 0.84 0.91 0.87 0.75 0.85 
Synapse-1.2 0.75 0.79 0.83 0.73 0.63 
Velocity-1.6 0.78 0.75 0.80 0.57 0.61 

Xalan-2.4 0.83 0.91 0.90 0.61 0.81 
Xerces-1.2 0.81 0.83 0.81 0.55 0.81 
Xerces-1.3 0.83 0.81 0.87 0.74 0.81 

Table 4. Results of ML classifiers in accuracy and F1-score after HPO 
Dataset KNN SVM RF NB XgBoost 

ant-1.7 0.86 0.76 0.88 0.70 0.81 
Camel-1.0 0.92 0.90 0.97 0.91 0.96 

Camel-1.6 0.76 0.86 0.87 0.60 0.80 
Data_arc 0.82 0.72 0.89 0.86 0.64 

Data_ivy-2.0 0.87 0.94 0.93 0.72 0.88 
Data_prop-6 0.88 0.74 0.91 0.60 0.90 

Data_redaktor 0.87 0.90 0.93 0.59 0.84 
Jedit-3.2 0.85 0.84 0.87 0.75 0.67 
Jedit-4.2 0.91 0.82 0.92 0.70 0.86 
Log4j-1.1 0.86 0.80 0.82 0.78 0.66 

Lucene-2.0 0.73 0.69 0.71 0.70 0.52 
Poi-2.0 0.87 0.91 0.93 0.56 0.88 

Synapse-1.0 0.87 0.93 0.90 0.76 0.89 
Synapse-1.2 0.79 0.81 0.85 0.70 0.66 
Velocity-1.6 0.81 0.78 0.82 0.60 0.65 

Xalan-2.4 0.86 0.92 0.91 0.64 0.84 
Xerces-1.2 0.83 0.88 0.89 0.60 0.84 
Xerces-1.3 0.87 0.84 0.91 0.77 0.84 

This segment provides the results of the HPO of ML 
classifiers utilizing TPE for SDP to increase its prediction 
accuracy. We conducted our experiment with an SDP dataset 
to categorize the information as defective or nondefective. 
The result was assessed utilizing classification accuracy. 
Below Tables 3, and 4 describes the accuracy of SDP using 
ML classifiers such as SVM, KNN, NB, RF, and XGBoost 
before and after HPO.  This procedure continues to evaluate 

according to their association with the accuracy. As expected, 
the method anticipated by us produced acceptable results for 
all eighteen datasets. From Table 4 it is evident that for HPO 
the prediction accuracy of ML classifiers is significantly 
enhanced for nearly all the datasets. To calculate the variance 
in the accuracy of every ML classifier, we compared the 
accuracy of the ML classifiers utilizing default values and 
HPO values shown in Tables 3, and 4. Overall, accuracy is 
improved by the HPO of ML classifiers using TPE rather than 
using defaulting parameter values. In summary, we can see 
XGBoost based TPE contains highest accuracy of 96% on 
Camel-1.0 dataset. this shows that XGBoost based TPE can 
outperform in terms of performance from other algorithms. 

VI. CONCLUSION AND FUTURE WORK

This paper anticipated SMOTE algorithm to enhance ML 
classifiers performance on class imbalance issue of SDP. 
Separately HP values of all ML classifiers are adjusted using 
a TPE to find the finest combination of HP. Best HP values 
are utilized for assessment. The dataset utilized is 18 promise 
repository datasets. On the basis of results XGBoost 
performance was increased significantly (accuracy by 96%) 
and all ML classifiers outperformed compared to the original 
ML classifiers without SMOTE and TPE HPO. Yet, each 
dataset has a diverse winning HPO values, obtained accuracy 
and the differences are not significant. For further research, 
Bayesian optimization and evolutionary algorithms can be 
utilized to evade unfairness in the results of HPO on SDP. 
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